
Regret in Online Combinatorial Optimization

Jean-Yves Audibert
Imagine, Université Paris Est,
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Abstract

We address online linear optimization problems when the possible actions of the decision
maker are represented by binary vectors. The regret of the decision maker is the difference
between her realized loss and the minimal loss she would have achieved by picking, in hind-
sight, the best possible action. Our goal is to understand the magnitude of the best possible
(minimax) regret. We study the problem under three different assumptions for the feedback
the decision maker receives: full information, and the partial information models of the so-
called “semi-bandit” and “bandit” problems. In the full information case we show that the
standard exponentially weighted average forecaster is a provably suboptimal strategy. For the
semi-bandit model, by combining the Mirror Descent algorithm and the INF (Implicitely Nor-
malized Forecaster) strategy, we are able to prove the first optimal bounds. Finally, in the
bandit case we discuss existing results in light of a new lower bound, and suggest a conjecture
on the optimal regret in that case.

1 Introduction.
In this paper we consider the framework of online linear optimization. The setup may be described
as a repeated game between a “decision maker” (or simply “player” or “forecaster”) and an “adver-
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sary” as follows: at each time instance t = 1, . . . , n, the player chooses, possibly in a randomized
way, an action from a given finite action set A ⊂ Rd. The action chosen by the player at time t is
denoted by at ∈ A. Simultaneously to the player, the adversary chooses a loss vector zt ∈ Z ⊂ Rd

and the loss incurred by the forecaster is aTt zt. The goal of the player is to minimize the expected
cumulative loss E

∑n
t=1 a

T
t zt where the expectation is taken with respect to the player’s internal

randomization (and eventually the adversary’s randomization).
In the basic “full-information” version of this problem, the player observes the adversary’s

move zt at the end of round t. Another important model for feedback is the so-called bandit
problem, in which the player only observes the incurred loss aTt zt. As a measure of performance
we define the regret 1 of the player as

Rn = E
n∑
t=1

aTt zt −min
a∈A

E
n∑
t=1

aT zt .

In this paper we address a specific example of online linear optimization: we assume that the action
set A is a subset of the d-dimensional hypercube {0, 1}d such that ∀a ∈ A, ||a||1 = m, and the
adversary has a bounded loss per coordinate, that is2 Z = [0, 1]d. We call this setting online com-
binatorial optimization. As we will see below, this restriction of the general framework contains
a rich class of problems. Indeed, in many interesting cases, actions are naturally represented by
Boolean vectors.

In addition to the full information and bandit versions of online combinatorial optimization,
we also consider another type of feedback which makes sense only in this combinatorial setting.
In the semi-bandit version, we assume that the player observes only the coordinates of zt that
were played in at, that is the player observes the vector (at(1)zt(1), . . . , at(d)zt(d)). All three
variants of online combinatorial optimization are sketched in Figure 1. More rigorously, online
combinatorial optimization is defined as a repeated game between a “player” and an “adversary.”
At each round t = 1, . . . , n of the game, the player chooses a probability distribution pt over the
set of actions A ⊂ {0, 1}d and draws a random action at ∈ A according to pt. Simultaneously, the
adversary chooses a vector zt ∈ [0, 1]d. More formally, zt is a measurable function of the “past”
(ps, as, zs)s=1,...,t−1. In the full information case, pt is a measurable function of (ps, as, zs)s=1,...,t−1.
In the semi-bandit case, pt is a measurable function of (ps, as, (as(i)zs(i))i=1,...,d)s=1,...,t−1 and in
the bandit problem it is a measurable function of (ps, as, (a

T
s zs))s=1,...,t−1.

1.1 Motivating examples.
Many problems can be tackled under the online combinatorial optimization framework. We give
here three simple examples:

• m-sets. In this example we consider the set A of all
(
d
m

)
Boolean vectors in dimension d

with exactly m ones. In other words, at every time step, the player selects m actions out of

1In the full information version, it is straightforward to obtain upper bounds for the stronger notion of regret
E
∑n

t=1 a
T
t zt − Emina∈A

∑n
t=1 a

T zt which is always at least as large as Rn. However, for partial information
games, this requires more work. In this paper we only consider Rn as a measure of the regret.

2Note that since all actions have the same size, i.e. ||a||1 = m,∀a ∈ A, one can reduce the case of Z = [α, β]d to
Z = [0, 1]d via a simple renormalization.
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Parameters: set of actions A ⊂ {0, 1}d; number of rounds n ∈ N.

For each round t = 1, 2, . . . , n;

(1) the player chooses a probability distribution pt over A and draws a random action at ∈ A ac-
cording to pt;

(2) simultaneously, the adversary selects a loss vector zt ∈ [0, 1]d (without revealing it);

(3) the player incurs the loss aTt zt. She observes

– the loss vector zt in the full information setting,

– the coordinates zt(i)at(i) in the semi-bandit setting,

– the instantaneous loss aTt zt in the bandit setting.

Goal: The player tries to minimize her cumulative loss
∑n

t=1 a
T
t zt.

Figure 1: Online combinatorial optimization.

d possibilities. When m = 1, the semi-bandit and bandit versions coincide and correspond
to the standard (adversarial) multi-armed bandit problem.

• Online shortest path problem. Consider a communication network represented by a graph
in which one has to send a sequence of packets from one fixed vertex to another. For each
packet one chooses a path through the graph and suffers a certain delay which is the sum of
the delays on the edges of the path. Depending on the traffic, the delays on the edges may
change, and, at the end of each round, according to the assumed level of feedback, the player
observes either the delays of all edges, the delays of each edge on the chosen path, or only
the total delay of the chosen path. The player’s objective is to minimize the total delay for
the sequence of packets.

One can represent the set of valid paths from the starting vertex to the end vertex as a set
A ⊂ {0, 1}d where d is the number of edges. If at time t, zt ∈ [0, 1]d is the vector of delays
on the edges, then the delay of a path a ∈ A is zTt a. Thus this problem is an instance of
online combinatorial optimization in dimension d, where d is the number of edges in the
graph. In this paper we assume, for simplicity, that all valid paths have the same length m.

• Ranking. Consider the problem of selecting a ranking of m items out of M possible items.
For example a website could have a set of M ads, and it has to select a ranked list of m of
these ads to appear on the webpage. One can rephrase this problem as selecting a matching of
sizem on the complete bipartite graphKm,M (with d = m×M edges). In the online learning
version of this problem, each day the website chooses one such list, and gains one dollar for
each click on the ads. This problem can easily be formulated as an online combinatorial
optimization problem.

Our theory applies to many more examples, such as spanning trees (which can be useful in certain
communication problems), or m-intervals.
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1.2 Previous work.
• Full Information. The full-information setting is now fairly well understood, and an op-

timal regret bound (in terms of m, d, n) was obtained by Koolen, Warmuth, and Kivinen
[26]. Previous papers under full information feedback also include Gentile and Warmuth
[14], Kivinen and Warmuth [25], Grove, Littlestone, and Schuurmans [15], Takimoto and
Warmuth [34], Kalai and Vempala [22], Warmuth and Kuzmin [36], Herbster and Warmuth
[19], and Hazan, Kale, and Warmuth [18].

• Semi-bandit. The first paper on the adversarial multi-armed bandit problem (i.e., the special
case of m-sets with m = 1) is by Auer, Cesa-Bianchi, Freund, and Schapire [4] who derived
a regret bound of order

√
dn log d. This result was improved to

√
dn by Audibert and Bubeck

[2, 3]. György, Linder, Lugosi, and Ottucsák [16] consider the online shortest path problem
and derive suboptimal regret bounds (in terms of the dependency on m and d). Uchiya,
Nakamura, and Kudo [35] (respectively Kale, Reyzin, and Schapire [23]) derived optimal
regret bounds for the case of m-sets (respectively for the problem of ranking selection) up to
logarithmic factors.

• Bandit. McMahan and Blum [27], and Awerbuch and Kleinberg [5] were the first to consider
this setting, and obtained suboptimal regret bounds (in terms of n). The first paper with
optimal dependency in n was by Dani, Hayes, and Kakade [12]. The dependency on m and
d was then improved in various ways by Abernethy, Hazan, and Rakhlin [1], Cesa-Bianchi,
and Lugosi [11], and Bubeck, Cesa-Bianchi, and Kakade [9]. We discuss these bounds in
detail in Section 4. In particular, we argue that the optimal regret bound in terms of d (and
m) is still an open problem.

We also refer the interested reader to the recent survey [8] for an overview of bandit problems in
various other settings.

1.3 Contribution and contents of the paper.
In this paper we are primarily interested in the optimal minimax regret in terms ofm, d and n. More
precisely, our aim is to determine the order of magnitude of the following quantity: For a given
feedback assumption, write sup for the supremum over all adversaries and inf for the infimum
over all allowed strategies for the player under the feedback assumption. (Recall the definition of
“adversary” and “player” from the introduction.) Then we are interested in

max
A⊂{0,1}d:∀a∈A,||a||1=m

inf supRn.

Our contribution to the study of this quantity is threefold. First, we unify the algorithms used
in Abernethy, Hazan, and Rakhlin [1], Koolen, Warmuth, and Kivinen [26], Uchiya, Nakamura,
and Kudo [35], and Kale, Reyzin, and Schapire [23] under the umbrella of mirror descent. The
idea of mirror descent goes back to Nemirovski [28], Nemirovski and Yudin [29]. A somewhat
similar concept was re-discovered in online learning by Herbster and Warmuth [20], Grove, Little-
stone, and Schuurmans [15], Kivinen and Warmuth [25] under the name of potential-based gradient
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Full Information Semi-Bandit Bandit

Lower Bound m
√
n log d

m

√
mdn m

√
dn

Upper Bound m
√
n log d

m

√
mdn m3/2

√
dn log d

m

Table 1: Bounds on the minimax regret (up to constant factors). The new results are set in boldface. In this
paper we also show that EXP2 in the full information case has a regret bounded below by d3/2

√
n (when m

is of order d).

descent, see [10, Chapter 11]. Recently, these ideas have been flourishing, see for instance Shalev-
Schwartz [33], Rakhlin [30], Hazan [17], and Bubeck [7]. Our main theorem (Theorem 2) allows
one to recover almost all known regret bounds for online combinatorial optimization. This first
contribution leads to our second main result, the improvement of the known upper bounds for the
semi-bandit game. In particular, we propose a different proof of the minimax regret bound of the
order of

√
nd in the standard d-armed bandit game that is much simpler than the one provided

in Audibert and Bubeck [3] (which also improves the constant factor). In addition to these upper
bounds we prove two new lower bounds. First we answer a question of Koolen, Warmuth, and
Kivinen [26] by showing that the exponentially weighted average forecaster is provably subopti-
mal for online combinatorial optimization. Our second lower bound is a minimax lower bound in
the bandit setting which improves known results by an order of magnitude. A summary of known
bounds and the new bounds proved in this paper can be found in Table 1.

The paper is organized as follows. In Section 2 we introduce the two algorithms discussed
in this paper. In particular in Section 2.1 we discuss the popular exponentially weighted average
forecaster and we show that it is a provably suboptimal strategy. Then in Section 2.2 we describe
our main algorithm, OSMD (Online Stochastic Mirror Descent), and prove a general regret bound in
terms of the Bregman divergence of the Fenchel-Legendre dual of the Legendre function defining
the strategy. In Section 3 we derive upper bounds for the regret in the semi-bandit case for OSMD

with appropriately chosen Legendre functions. Finally in Section 4 we prove a new lower bound
for the bandit setting, and we formulate a conjecture on the correct order of magnitude of the regret
for that problem based on this new result and the regret bounds obtained in [1, 9].

2 Algorithms.
In this section we discuss two classes of algorithms that have been proposed for online combina-
torial optimization.

2.1 Expanded Exponential weights (EXP2).
The simplest approach to online combinatorial optimization is to consider each action of A as
an independent “expert,” and then apply a generic regret minimizing strategy. Perhaps the most
popular such strategy is the exponentially weighted average forecaster (see, e.g., [10]). (This
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strategy is sometimes called Hedge, see Freund and Schapire [13].) We call the resulting strategy
for the online combinatorial optimization problem EXP2, see Figure 2. In the full information
setting, EXP2 corresponds to “Expanded Hedge,” as defined in Koolen, Warmuth, and Kivinen
[26]. In the semi-bandit case, EXP2 was studied by György, Linder, Lugosi, and Ottucsák [16]
while in the bandit case in Dani, Hayes, and Kakade [12], Cesa-Bianchi and Lugosi [11], and
Bubeck, Cesa-Bianchi, and Kakade [9]. Note that in the bandit case, EXP2 is mixed with an
exploration distribution, see Section 4 for more details.

Despite strong interest in this strategy, no optimal regret bound has been derived for it in the
combinatorial setting. More precisely, the best bound (which can be derived from a standard

argument, see for example [12] or [26]) is of order m3/2
√
n log

(
d
m

)
. On the other hand, in [26]

the authors showed that by using Mirror Descent (see next section) with the negative entropy, one

obtains a regret bounded by m
√
n log

(
d
m

)
. Furthermore this latter bound is clearly optimal (up

to a numerical constant), as one can see from the standard lower bound in prediction with expert
advice (consider the set A that corresponds to playing m expert problems in parallel with d/m
experts in each problem). In [26] the authors leave as an open question the problem of whether it
would be possible to improve the bound for EXP2 to obtain the optimal order of magnitude. The
following theorem shows that this is impossible, and that in fact EXP2 is a provably suboptimal
strategy.

Theorem 1 Let n ≥ d. There exists a subset A ⊂ {0, 1}d such that in the full information setting,
the regret of the EXP2 strategy (for any learning rate η), satisfies

sup
adversary

Rn ≥ 0.01 d3/2
√
n.

The proof is deferred to the Appendix.

2.2 Online Stochastic Mirror Descent.
In this section we describe the main algorithm studied in this paper. We call it Online Stochastic
Mirror Descent (OSMD). Each term in this name refers to a part of the algorithm: Mirror Descent
originates in the work of Nemirovski and Yudin [29]. The idea of mirror descent is to perform a
gradient descent, where the update with the gradient is performed in the dual space (defined by
some Legendre function F ) rather than in the primal (see below for a precise formulation). The
Stochastic part takes its origin from Robbins and Monro [31] and from Kiefer and Wolfowitz [24].
The key idea is that it is enough to observe an unbiased estimate of the gradient rather than the true
gradient in order to perform a gradient descent. Finally the Online part comes from Zinkevich [37].
Zinkevich derived the Online Gradient Descent (OGD) algorithm, which is a version of gradient
descent tailored to online optimization.

To properly describe the OSMD strategy, we recall a few concepts from convex analysis, see
Hiriart-Urruty and Lemaréchal [21] for a thorough treatment of this subject. Let D ⊂ Rd be an
open convex set, and D the closure of D.

Definition 1 We call Legendre any continuous function F : D → R such that

(i) F is strictly convex continuously differentiable on D,
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EXP2:

Parameter: Learning rate η.

Let p1 =
(

1
|A| , . . . ,

1
|A|

)
∈ R|A|.

For each round t = 1, 2, . . . , n;

(a) Play at ∼ pt and observe

– the loss vector zt in the full information game,

– the coordinates zt(i)1at(i)=1 in the semi-bandit game,

– the instantaneous loss aTt zt in the bandit game.

(b) Estimate the loss vector zt by z̃t. For instance, one may take

– z̃t = zt in the full information game,

– z̃t(i) = zt(i)∑
a∈A:a(i)=1 pt(a)

at(i) in the semi-bandit game,

– z̃t = P+
t ata

T
t zt, with Pt = Ea∼pt(aaT ) in the bandit game.

(c) Update the probabilities, for all a ∈ A,

pt+1(a) =
exp(−ηaT z̃t)pt(a)∑
b∈A exp(−ηbT z̃Tt )pt(b)

.

Figure 2: The EXP2 strategy. The notation Ea∼pt denotes expected value with respect to the random choice
of a when it is distributed according to pt.

(ii) limx→D\D ||∇F (x)|| = +∞.3

The Bregman divergence DF : D ×D associated to a Legendre function F is defined by

DF (x, y) = F (x)− F (y)− (x− y)T∇F (y).

Moreover, we say that D∗ = ∇F (D) is the dual space of D under F . We also denote by F ∗ the
Legendre-Fenchel transform of F defined by

F ∗(u) = sup
x∈D

(
xTu− F (x)

)
.

Lemma 1 Let F be a Legendre function. Then F ∗∗ = F and ∇F ∗ = (∇F )−1 on the set D∗.
Moreover, ∀x, y ∈ D,

DF (x, y) = DF ∗(∇F (y),∇F (x)). (1)

3By the equivalence of norms in Rd, this definition does not depend on the choice of the norm.
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The lemma above is the key to understanding how a Legendre function acts on the space. The
gradient ∇F maps D to the dual space D∗, and ∇F ∗ is the inverse mapping from the dual space
to the original (primal) space. Moreover, (1) shows that the Bregman divergence in the primal
space corresponds exactly to the Bregman divergence of the Legendre-Fenchel transform in the
dual space. A proof of this result can be found, for example, in [Chapter 11, [10]].

We now have all ingredients to describe the OSMD strategy, see Figure 3 for the precise for-
mulation. Note that step (d) is well defined if the following consistency condition is satisfied:

∇F (x)− ηz̃t ∈ D∗,∀x ∈ Conv(A) ∩ D. (2)

In the full information setting, algorithms of this type were studied by Abernethy, Hazan, and
Rakhlin [1], Rakhlin [30], and Hazan [17]. In these papers the authors adopted the presenta-
tion suggested by Beck and Teboulle [6], which corresponds to a Follow-the-Regularized-Leader
(FTRL) type strategy. There the focus was on F being strongly convex with respect to some norm.
Moreover, in [1] the authors also consider the bandit case, and switch to F being a self-concordant
barrier for the convex hull of A (see Section 4 for more details). Another line of work studied this
type of algorithms with F being the negative entropy, see Koolen, Warmuth, and Kivinen [26] for
the full information case and Uchiya, Nakamura, and Kudo [35], Kale, Reyzin, and Schapire [23]
for specific instances of the semi-bandit case. All these results are unified and described in details
in Bubeck [7]. In this paper we consider a new type of Legendre functions F inspired by Audibert
and Bubeck [3], see Section 3.

Regarding computational complexity, OSMD is efficient as soon as the polytope Conv(A) can
be described by a polynomial (in d) number of constraints. Indeed in that case steps (a)-(b) can be
performed efficiently jointly (one can get an algorithm by looking at the proof of Carathéodory’s
theorem), and step (d) is a convex program with a polynomial number of constraints. In many
interesting examples (such asm-sets, selection of rankings, spanning trees, paths in acyclic graphs)
one can describe the convex hull of A by a polynomial number of constraints, see Schrijver [32].
On the other hand, there also exist important examples where this is not the case (such as paths on
general graphs). Also note that for some specific examples it is possible to implement OSMD with
improved computational complexity, see Koolen, Warmuth, and Kivinen [26].

In this paper we restrict our attention to the combinatorial learning setting in which A is a
subset of {0, 1}d and the loss is linear. However, one should note that this specific form ofA plays
no role in the definition of OSMD. Moreover, if the loss is not linear, then one can modify OSMD

by performing a gradient update with a gradient of the loss (rather than the loss vector zt). See
Bubeck [7] for more details on this approach.

The following result is at the basis of our improved regret bounds for OSMD in the semi-bandit
setting, see Section 3.

Theorem 2 Suppose that (2) is satisfied and the loss estimates are unbiased in the sense that
Eat∼pt z̃t = zt. Then the regret of the OSMD strategy satisfies

Rn ≤
supa∈A F (a)− F (x1)

η
+

1

η

n∑
t=1

EDF ∗

(
∇F (xt)− ηz̃t,∇F (xt)

)
.
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OSMD:

Parameters:

• learning rate η > 0,

• Legendre function F defined on D ⊃ Conv(A).

Let x1 ∈ argminx∈Conv(A) F (x).

For each round t = 1, 2, . . . , n;

(a) Let pt be a distribution on the set A such that xt = Ea∼pta.

(b) Draw a random action at according to the distribution pt and observe the feedback.

(c) Based on the observed feedback, estimate the loss vector zt by z̃t.

(d) Let wt+1 ∈ D satisfy

∇F (wt+1) = ∇F (xt)− ηz̃t. (3)

(e) Project the weight vector wt+1 defined by (3) on the convex hull of A:

xt+1 ∈ argmin
x∈Conv(A)

DF (x,wt+1). (4)

Figure 3: Online Stochastic Mirror Descent (OSMD).

Proof Let a ∈ A. Using that at and z̃t are unbiased estimates of xt and zt, we have

E
n∑
t=1

(at − a)T zt = E
n∑
t=1

(xt − a)T z̃t.

Using (3), and applying the definition of the Bregman divergences, one obtains

ηz̃Tt (xt − a) = (a− xt)T
(
∇F (wt+1)−∇F (xt)

)
= DF (a, xt) +DF (xt, wt+1)−DF (a, wt+1).

By the Pythagorean theorem for Bregman divergences (see, e.g., Lemma 11.3 of [10]), we have
DF (a, wt+1) ≥ DF (a, xt+1) +DF (xt+1, wt+1), hence

ηz̃Tt (xt − a) ≤ DF (a, xt) +DF (xt, wt+1)−DF (a, xt+1)−DF (xt+1, wt+1) .

Summing over t gives

n∑
t=1

ηz̃Tt (xt − a) ≤ DF (a, a1)−DF (a, an+1) +
n∑
t=1

(
DF (xt, wt+1)−DF (xt+1, wt+1)

)
.
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By the nonnegativity of the Bregman divergences, we get

n∑
t=1

ηz̃Tt (xt − a) ≤ DF (a, a1) +
n∑
t=1

DF (xt, wt+1).

From (1), one has DF (xt, wt+1) = DF ∗
(
∇F (xt) − ηz̃t,∇F (xt)

)
. Moreover, by writing the first-

order optimality condition for x1, one directly obtainsDF (a, x1) ≤ F (a)−F (x1) which concludes
the proof.

Note that, if F admits an Hessian, denoted ∇2F , that is always invertible, then one can prove
that, up to a third-order term

(
in z̃t

)
, the regret bound can be written as

Rn /
supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

z̃Tt
(
∇2F (xt)

)−1
z̃t. (5)

The main technical difficulty is to control the third-order error term in this inequality.

3 Semi-bandit feedback.
In this section we consider online combinatorial optimization with semi-bandit feedback. As we
already discussed, in the full information case Koolen, Warmuth, and Kivinen [26] proved that
OSMD with the negative entropy is a minimax optimal strategy. We first prove a regret bound when
one uses this strategy with the following estimate for the loss vector:

z̃t(i) =
zt(i)at(i)

xt(i)
. (6)

Note that this is a valid estimate since it makes only use of (zt(1)at(1), . . . , zt(d)at(d)). Moreover,
it is unbiased with respect to the random draw of at from pt, since by definition, Eat∼ptat(i) =
xt(i). In other words, Eat∼pt z̃t(i) = zt(i).

Theorem 3 The regret of OSMD with F (x) =
∑d

i=1 xi log xi−
∑d

i=1 xi (and D = (0,+∞)d) and
any non-negative unbiased loss estimate z̃t(i) ≥ 0 satisfies

Rn ≤
m log d

m

η
+
η

2

n∑
t=1

d∑
i=1

xt(i)z̃t(i)
2.

In particular, with the estimate (6) and η =
√

2m log dm
nd

,

Rn ≤
√

2mdn log
d

m
.
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Proof One can easily see that for the negative entropy the dual space is D∗ = Rd. Thus, (2) is
verified and OSMD is well defined. Moreover, again by straightforward computations, one can also
see that

DF ∗

(
∇F (x),∇F (y)

)
=

d∑
i=1

y(i) Θ

(
(∇F (x)−∇F (y))(i)

)
, (7)

where Θ(x) = exp(x) − 1 − x. Thus, using Theorem 2 and the facts that Θ(x) ≤ x2

2
for x ≤ 0

and
∑d

i=1 xt(i) ≤ m, one obtains

Rn ≤
supa∈A F (a)− F (x1)

η
+

1

η

n∑
t=1

EDF ∗

(
∇F (xt)− ηz̃t,∇F (xt)

)

≤ supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

d∑
i=1

xt(i)z̃t(i)
2

The proof of the first inequality is concluded by noting that:

F (a)− F (x1) ≤
d∑
i=1

x1(i) log
1

x1(i)
≤ m log

(
d∑
i=1

x1(i)

m

1

x1(i)

)
= m log

d

m
.

The second inequality follows from

Ext(i)z̃t(i)2 ≤ E
at(i)

xt(i)
= 1.

Using the standard
√
dn lower bound for the multi-armed bandit (which corresponds to the case

where A is the canonical basis), see e.g., [Theorem 30, [3]], one can directly obtain a lower bound
of order

√
mdn for our setting. Thus the upper bound derived in Theorem 3 has an extraneous

logarithmic factor compared to the lower bound. This phenomenon already appeared in the basic
multi-armed bandit setting. In that case, the extra logarithmic factor was removed in Audibert and
Bubeck [2] by resorting to a new class of strategies for the expert problem, called INF (Implicitely
Normalized Forecaster). Next we generalize this class of algorithms to the combinatorial setting,
and thus remove the extra logarithmic factor. First we introduce the notion of a potential and the
associated Legendre function.

Definition 2 Let ω ≥ 0. A function ψ : (−∞, a) → R∗+ for some a ∈ R ∪ {+∞} is called an
ω-potential if it is convex, continuously differentiable, and satisfies

lim
x→−∞

ψ(x) = ω , lim
x→a

ψ(x) = +∞ ,

ψ′ > 0 ,

∫ ω+1

ω

|ψ−1(s)|ds < +∞ .

For every potential ψ we associate the function Fψ defined on D = (ω,+∞)d by:

Fψ(x) =
d∑
i=1

∫ xi

ω

ψ−1(s)ds.

11



In this paper we restrict our attention to 0-potentials which we will simply call potentials. A
non-zero value of ω may be used to derive regret bounds that hold with high probability (instead
of pseudo-regret bounds, see footnote 1).

The first order optimality condition for (4) implies that OSMD with Fψ is a direct generalization
of INF with potential ψ, in the sense that the two algorithms coincide whenA is the canonical basis.
Note, in particular, that with ψ(x) = exp(x) we recover the negative entropy for Fψ. In [3], the
choice of ψ(x) = (−x)q with q > 1 was recommended. We show in Theorem 4 that here, again,
this choice gives a minimax optimal strategy.

Lemma 2 Let ψ be a potential. Then F = Fψ is Legendre and for all u, v ∈ D∗ = (−∞, a)d such
that ui ≤ vi,∀i ∈ {1, . . . , d},

DF ∗(u, v) ≤ 1

2

d∑
i=1

ψ′(vi)(ui − vi)2.

Proof A direct examination shows thatF = Fψ is a Legendre function. Moreover, since∇F ∗(u) =
(∇F )−1(u) =

(
ψ(u1), . . . , ψ(ud)

)
, we obtain

DF ∗(u, v) =
d∑
i=1

(∫ ui

vi

ψ(s)ds− (ui − vi)ψ(vi)

)
.

From a Taylor expansion, we get

DF ∗(u, v) ≤
d∑
i=1

max
s∈[ui,vi]

1

2
ψ′(s)(ui − vi)2.

Since the function ψ is convex, and ui ≤ vi, we have

max
s∈[ui,vi]

ψ′(s) ≤ ψ′
(

max(ui, vi)
)
≤ ψ′(vi),

which gives the desired result.

Theorem 4 Let ψ be a potential. The regret of OSMD with F = Fψ and any non-negative unbiased
loss estimate z̃t satisfies

Rn ≤
supa∈A F (a)− F (x1)

η
+
η

2

n∑
t=1

d∑
i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
.

In particular, with the estimate (6), ψ(x) = (−x)−q, q > 1,and η =
√

2
q−1

m1−2/q

d1−2/q
1
n

,

Rn ≤ q

√
2

q − 1
mdn .

With q = 2 this gives
Rn ≤ 2

√
2mdn .

12



In the case m = 1, the above theorem improves the bound Rn ≤ 8
√
nd obtained in Theorem

11 of [3].
Proof First note that since D∗ = (−∞, a)d and z̃t has non-negative coordinates, OSMD is well
defined (that is, (2) is satisfied).

The first inequality follows from Theorem 2 and the fact that ψ′(ψ−1(s)) = 1
(ψ−1)′(s)

.

Let ψ(x) = (−x)−q. Then ψ−1(x) = −x−1/q and F (x) = − q
q−1
∑d

i=1 x
1−1/q
i . In particular,

note that by Hölder’s inequality, since
∑d

i=1 x1(i) = m,

F (a)− F (x1) ≤
q

q − 1

d∑
i=1

x1(i)
1−1/q ≤ q

q − 1
m(q−1)/qd1/q.

Moreover, note that (ψ−1)′(x) = 1
q
x−1−1/q, and

d∑
i=1

E
z̃t(i)

2

(ψ−1)′(xt(i))
≤ q

d∑
i=1

xt(i)
1/q ≤ qm1/qd1−1/q,

which concludes the proof.

4 Bandit feedback.
In this section we consider online combinatorial optimization with bandit feedback. This setting is
much more challenging than the semi-bandit case, and in order to obtain sublinear regret bounds all
known strategies add an exploration component to the algorithm. For example, in EXP2, instead
of playing an action at random according to the exponentially weighted average distribution pt,
one draws a random action from pt with probability 1 − γ and from some fixed “exploration”
distribution µ with probability γ. On the other hand, in OSMD, one randomly perturbs xt to some
x̃t, and then plays at random a point in A such that on average one plays x̃t.

In Bubeck, Cesa-Bianchi, and Kakade [9], the authors study the EXP2 strategy with the explo-
ration distribution µ supported on the contact points between the polytope Conv(A) and the John
ellipsoid of this polytope (i.e., the ellipsoid of minimal volume enclosing the polytope). Using this
method they are able to prove the best known upper bound for online combinatorial optimization
with bandit feedback. They show that the regret of EXP2 mixed with John’s exploration (and with
the estimate described in Figure 2) satisfies

Rn ≤ 2m3/2

√
3dn log

ed

m
.

Our next theorem shows that no strategy can achieve a regret less than a constant times m
√
dn,

leaving a gap of a factor of
√
m log d

m
. As we argue below, we conjecture that the lower bound is of

the correct order of magnitude. However, improving the upper bound seems to require some sub-
stantially new ideas. Note that the following bound gives limitations that no strategy can surpass,
on the contrary to Theorem 1 which was dedicated to the EXP2 strategy.

13



Theorem 5 Let n ≥ d ≥ 2m. There exists a subset A ⊂ {0, 1}d such that ||a||1 = m,∀a ∈ A,
under bandit feedback, one has

inf
strategies

sup
adversaries

Rn ≥ 0.02m
√
dn , (8)

where the infimum and the supremum are taken over the class of strategies for the “player” and
for the “adversary” as defined in the introduction.

Note that it should not come as a surprise that EXP2 (with John’s exploration) is suboptimal,
since even in the full information case the basic EXP2 strategy was provably suboptimal, see Theo-
rem 1. We conjecture that the correct order of magnitude for the minimax regret in the bandit case
is m
√
dn, as the above lower bound suggests.

A promising approach to resolve this conjecture is to consider again the OSMD approach.
However we believe that in the bandit case, one has to consider Legendre functions with non-
diagonal Hessian (on the contrary to the Legendre functions considered so far in this paper). Aber-
nethy, Hazan, and Rakhlin [1] propose to use a self-concordant barrier function for the polytope
Conv(A). Then they randomly perturb the point xt given by OSMD using the eigenstructure of
the Hessian. This approach leads to a regret upper bound of order md

√
θn log n for θ > 0 when

Conv(A) admits a θ-self-concordant barrier function. Unfortunately, even when there exists a
O(1)-self concordant barrier, this bound is still larger than the conjectured optimal bound by a
factor

√
d. In fact, it was proved in [9] that in some cases there exist better choices for the Leg-

endre function and the perturbation than those described in [1], even when there is a O(1)-self
concordant function for the action set. How to generalize this approach to the polytopes involved
in online combinatorial optimization is a challenging open problem.

A Proof of Theorem 1.
For the sake of simplicity, we assume that d is a multiple of 4 and that n is even. We consider the
following subset of the hypercube:

A =

{
a ∈ {0, 1}d :

d/2∑
i=1

ai = d/4 and(
ai = 1, ∀i ∈ {d/2 + 1; . . . , d/2 + d/4}

)
or
(
ai = 1,∀i ∈ {d/2 + d/4 + 1, . . . , d}

)}
.

That is, choosing a point in A corresponds to choosing a subset of d/4 elements among the first
half of the coordinates, and choosing one of the two first disjoint intervals of size d/4 in the second
half of the coordinates.

We prove that for any parameter η, there exists an adversary such that Exp2 (with parameter η)
has a regret of at least nd

16
tanh

(
ηd
8

)
, and that there exists another adversary such that its regret is at

least min
(
d log 2
12η

, nd
12

)
. As a consequence, we have

supRn ≥ max

(
nd

16
tanh

(ηd
8

)
,min

(
d log 2

12η
,
nd

12

))
≥ min

(
max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
,
nd

12

)
≥ min

(
A,
nd

12

)
,
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with

A = min
η∈[0,+∞)

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

)
≥ min

(
min
ηd≥8

nd

16
tanh

(ηd
8

)
,min
ηd<8

max

(
nd

16
tanh

(ηd
8

)
,
d log 2

12η

))
≥ min

(
nd

16
tanh(1),min

ηd<8
max

(
nd

16

ηd

8
tanh(1),

d log 2

12η

))
≥ min

(
nd

16
tanh(1),

√
nd3 log 2 · tanh(1)

128 · 12

)
≥ min

(
0.04nd, 0.01 d3/2

√
n
)
,

where we used the fact that tanh is concave and increasing on R+. As n ≥ d, this implies the
stated lower bound.

First we prove the lower bound nd
16

tanh
(
ηd
8

)
. Define the following adversary:

zt(i) =


1 if i ∈ {d/2 + 1; . . . , d/2 + d/4} and t odd,
1 if i ∈ {d/2 + d/4 + 1, . . . , d} and t even,
0 otherwise.

This adversary always puts a zero loss on the first half of the coordinates, and alternates between
a loss of d/4 for choosing the first interval (in the second half of the coordinates) and the second
interval. At the beginning of odd rounds, any vertex a ∈ A has the same cumulative loss and
thus Exp2 picks its expert uniformly at random, which yields an expected cumulative loss equal to
nd/16. On the other hand, at even rounds the probability distribution to select the vertex a ∈ A is
always the same. More precisely, the probability of selecting a vertex which contains the interval
{d/2 + d/4 + 1, . . . , d} (i.e, the interval with a d/4 loss at this round) is exactly 1

1+exp(−ηd/4) . This
adds an expected cumulative loss equal to nd

8
1

1+exp(−ηd/4) . Finally, note that the loss of any fixed
vertex is nd/8. Thus, we obtain

Rn =
nd

16
+
nd

8

1

1 + exp(−ηd/4)
− nd

8
=
nd

16
tanh

(ηd
8

)
.

It remains to show a lower bound proportional to 1/η. To this end, we consider a different
adversary defined by

zt(i) =


1− ε if i ≤ d/4,

1 if i ∈ {d/4 + 1, . . . , d/2},
0 otherwise,

for some fixed ε > 0.
Note that against this adversary the choice of the interval (in the second half of the components)

does not matter. Moreover, by symmetry, the weight of any coordinate in {d/4 + 1, . . . , d/2} is
the same (at any round). Finally, note that this weight is decreasing with t. Thus, we have the
following identities (in the big sums i represents the number of components selected in the first
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d/4 components):

Rn =
nεd

4

∑
a∈A:ad/2=1 exp(−ηnzT1 a)∑

a∈A exp(−ηnzT1 a)

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(−η(nd/4− inε))∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(−η(nd/4− inε))

=
nεd

4

∑d/4−1
i=0

(
d/4
i

)(
d/4−1
d/4−i−1

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

=
nεd

4

∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)∑d/4

i=0

(
d/4
i

)(
d/4
d/4−i

)
exp(ηinε)

where we used
(
d/4−1
d/4−i−1

)
=
(
1 − 4i

d

)(
d/4
d/4−i

)
in the last equality. Thus, taking ε = min

(
log 2
ηn
, 1
)

yields

Rn ≥ min

(
d log 2

4η
,
nd

4

)∑d/4−1
i=0

(
1− 4i

d

)(
d/4
i

)2
min(2, exp(ηn))i∑d/4

i=0

(
d/4
i

)2
min(2, exp(ηn))i

≥ min

(
d log 2

12η
,
nd

12

)
,

where the last inequality follows from Lemma 3 in the appendix. This concludes the proof of the
lower bound.

B Proof of Theorem 5
The structure of the proof is similar to that of [3, Theorem 30], which deals with the simple case
where m = 1. The main important conceptual difference is contained in Lemma 4, which is at the
heart of this new proof. The main argument follows the line of standard lower bounds for bandit
problems, see, e.g., [10]: The worst-case regret is bounded from below by by taking an average
over a conveniently chosen class of strategies of the adversary. Then, by Pinsker’s inequality, the
problem is reduced to computing the Kullback-Leibler divergence of certain distributions. The
main technical argument, given in Lemma 4, is for proving manageable bounds for the relevant
Kullback-Leibler divergence.

For the sake of simplifying notation, we assume that d is a multiple of m, and we identify
{0, 1}d with the set of m × (d/m) binary matrices {0, 1}m× d

m . We consider the following set of
actions:

A = {a ∈ {0, 1}m×
d
m : ∀i ∈ {1, . . . ,m},

d/m∑
j=1

a(i, j) = 1}.

In other words, the player is playing in parallel m finite games with d/m actions.
From step 1 to 3 we restrict our attention to the case of deterministic strategies for the player,

and we show how to extend the results to arbitrary strategies in step 4.

First step: definitions.
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We denote by Ii,t ∈ {1, . . . ,m} the random variable such that at(i, Ii,t) = 1. That is, Ii,t is
the action chosen at time t in the ith game. Moreover, let τ be drawn uniformly at random from
{1, . . . , n}.

In this proof we consider random adversaries indexed by A. More precisely, for α ∈ A, we
define the α-adversary as follows: For any t ∈ {1, . . . , n}, zt(i, j) is drawn from a Bernoulli
distribution with parameter 1

2
− εα(i, j). In other words, against adversary α, in the ith game, the

action j such that α(i, j) = 1 has a loss slightly smaller (in expectation) than the other actions. We
denote by Eα integration with respect to the loss generation process of the α-adversary. We write
Pi,α for the probability distribution of α(i, Ii,τ ) when the player faces the α-adversary. Note that
we have Pi,α(1) = Eα 1

n

∑n
t=1 1α(i,Ii,t)=1, hence, against the α-adversary, we have

Rn = Eα
n∑
t=1

m∑
i=1

ε1α(i,Ii,t)6=1 = nε

m∑
i=1

(1− Pi,α(1)) ,

which implies (since the maximum is larger than the mean)

max
α∈A

Rn ≥ nε
m∑
i=1

(
1− 1

(d/m)m

∑
α∈A

Pi,α(1)

)
. (9)

Second step: information inequality.
Let P−i,α be the probability distribution of α(i, Ii,τ ) against the adversary which plays like the

α-adversary except that in the ith game, the losses of all coordinates are drawn from a Bernoulli
distribution of parameter 1/2. We call it the (−i, α)-adversary and we denote by E(−i,α) integration
with respect to its loss generation process. By Pinsker’s inequality,

Pi,α(1) ≤ P−i,α(1) +

√
1

2
KL(P−i,α,Pi,α) ,

where KL denotes the Kullback-Leibler divergence. Moreover, note that by symmetry of the
adversaries (−i, α),

1

(d/m)m

∑
α∈A

P−i,α(1) =
1

(d/m)m

∑
α∈A

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

∑
α:(−i,α)=(−i,β)

E(−i,α)α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m
E(−i,β)

∑
α:(−i,α)=(−i,β)

α(i, Ii,τ )

=
1

(d/m)m

∑
β∈A

1

d/m

=
m

d
, (10)

and thus, thanks to the concavity of the square root,

1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+

√
1

2(d/m)m

∑
α∈A

KL(P−i,α,Pi,α). (11)
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Third step: computation of KL(P−i,α,Pi,α) with the chain rule.
Note that since the forecaster is deterministic, the sequence of observed losses (up to time

n) Wn ∈ {0, . . . ,m}n uniquely determines the empirical distribution of plays, and, in particular,
the probability distribution of α(i, Ii,τ ) conditionally to Wn is the same for any adversary. Thus,
if we denote by Pnα (respectively Pn−i,α) the probability distribution of Wn when the forecaster
plays against the α-adversary (respectively the (−i, α)-adversary), then one can easily prove that
KL(P−i,α,Pi,α) ≤ KL(Pn−i,α,Pnα). Now we use the chain rule for Kullback-Leibler divergence
iteratively to introduce the probability distributions Ptα of the observed losses Wt up to time t.
More precisely, we have,

KL(Pn−i,α,Pnα)

= KL(P1
−i,α,P1

α) +
n∑
t=2

∑
wt−1∈{0,...,m}t−1

Pt−1−i,α(wt−1)KL(Pt−i,α(.|wt−1),Ptα(.|wt−1))

= KL (B∅,B′∅)1α(i,Ii,1)=1 +
n∑
t=2

∑
wt−1:α(i,Ii,1)=1

Pt−1−i,α(wt−1)KL
(
Bwt−1 ,B′wt−1

)
,

where Bwt−1 and B′wt−1
are sums of m Bernoulli distributions with parameters in {1/2, 1/2 − ε}

and such that the number of Bernoullis with parameter 1/2 in Bwt−1 is equal to the number of
Bernoullis with parameter 1/2 in B′wt−1

plus one. Now using Lemma 4 (see below) we obtain,

KL
(
Bwt−1 ,B′wt−1

)
≤ 8 ε2

(1− 4ε2)m
.

In particular, this gives

KL(Pn−i,α,Pnα) ≤ 8 ε2

(1− 4ε2)m
E−i,α

n∑
t=1

1α(i,Ii,t)=1 =
8 ε2n

(1− 4ε2)m
P−i,α(1).

Summing and plugging this into (11) we obtain (again thanks to (10)), for ε ≤ 1√
8
,

1

(d/m)m

∑
α∈A

Pi,α(1) ≤ m

d
+ ε

√
8n

d
.

To conclude the proof of (8) for deterministic players one needs to plug this last equation in (9)
along with straightforward computations.
Fourth step: Fubini’s theorem to handle non-deterministic players.

Consider now a randomized player, and let Erand denote the expectation with respect to the
randomization of the player. Then one has (thanks to Fubini’s theorem),

1

(d/m)m

∑
α∈A

E
n∑
t=1

(aTt zt − αT z) = Erand
1

(d/m)m

∑
α∈A

Eα
n∑
t=1

(aTt zt − αT z).

Now note that if we fix the realization of the forecaster’s randomization then the results of the
previous steps apply and, in particular, one can lower bound 1

(d/m)m

∑
α∈A Eα

∑n
t=1(a

T
t zt − αT z)

as before (note that α is the optimal action in expectation against the α-adversary).
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C Technical lemmas.
Lemma 3 For any k ∈ N∗, for any 1 ≤ c ≤ 2, we have∑k

i=0(1− i/k)
(
k
i

)2
ci∑k

i=0

(
k
i

)2
ci

≥ 1/3.

Proof Let f(c) denote the expression on the left-hand side of the inequality. Introduce the random
variable X , which is equal to i ∈ {0, . . . , k} with probability

(
k
i

)2
ci
/∑k

j=0

(
k
j

)2
cj . We have

f ′(c) = 1
c
E[X(1−X/k)]− 1

c
E(X)E(1−X/k) = − 1

ck
VarX ≤ 0. So the function f is decreasing

on [1, 2], and therefore it suffices to consider c = 2. Numerator and denominator of the left-hand
side differ only by the factor 1− i/k. A lower bound for the left-hand side can thus be obtained by
showing that the terms for i close to k are not essential to the value of the denominator. To prove
this, we may use Stirling’s formula which implies that for any k ≥ 2 and i ∈ [1, k − 1],(k

i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e−1/6 <

(
k

i

)
<
(k
i

)i( k

k − i

)k−i √
k√

2πi(k − i)
e1/12,

hence (k
i

)2i( k

k − i

)2(k−i) ke−1/3

2πi(k − i)
<

(
k

i

)2

<
(k
i

)2i( k

k − i

)2(k−i)ke1/6
2πi

.

Introduce λ = i/k and χ(λ) = 2λ

λ2λ(1−λ)2(1−λ) . We have

[χ(λ)]k
2e−1/3

πk
<

(
k

i

)2

2i < [χ(λ)]k
e1/6

2πλ
. (12)

Lemma 3 can be numerically verified for k ≤ 106. We now consider k > 106. For λ ≥
0.666, since the function χ can be shown to be decreasing on [0.666, 1], the inequality

(
k
i

)2
2i <

[χ(0.666)]k e1/6

2×0.666×π holds. We have χ(0.657)/χ(0.666) > 1.0002. Consequently, for k > 106,
we have [χ(0.666)]k < 0.001× [χ(0.657)]k/k2. So for λ ≥ 0.666 and k > 106, we have(

k

i

)2

2i < 0.001× [χ(0.657)]k
e1/6

2π × 0.666× k2
< [χ(0.657)]k

2e−1/3

1000πk2

= min
λ∈[0.656,0.657]

[χ(λ)]k
2e−1/3

1000πk2

<
1

1000k
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i , (13)

where the last inequality comes from (12) and the fact that there exists i ∈ {1, . . . , k−1} such that
i/k ∈ [0.656, 0.657]. Inequality (13) implies that for any i ∈ {1, . . . , k}, we have

∑
0.666k≤i≤k

(
k

i

)2

2i <
1

1000
max

i∈{1,...,k−1}∩[0,0.666k)

(
k

i

)2

2i <
1

1000

∑
0≤i<0.666k

(
k

i

)2

2i.
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To conclude, introducing A =
∑

0≤i<0.666k

(
k
i

)2
2i, we have∑k

i=0(1− i/k)
(
k
i

)2
2i∑k

i=0

(
k
i

)(
k
k−i

)
2i

>
(1− 0.666)A

A+ 0.001A
≥ 1

3
.

Lemma 4 Let ` and n be integers with 1
2
≤ n

2
≤ ` ≤ n. Let p, p′, q, p1, . . . , pn be real numbers in

(0, 1) with q ∈ {p, p′}, p1 = · · · = p` = q and p`+1 = · · · = pn. Let B (resp. B′) be the sum of
n + 1 independent Bernoulli distributions with parameters p, p1, . . . , pn (resp. p′, p1, . . . , pn). We
have

KL(B,B′) ≤ 2(p′ − p)2

(1− p′)(n+ 2)q
.

Proof LetZ,Z ′, Z1, . . . , Zn be independent Bernoulli distributions with parameters p, p′, p1, . . . , pn.
Define S =

∑`
i=1 Zi, T =

∑n
i=`+1 Zi and V = Z +S. By a slight and usual abuse of notation, we

use KL to denote Kullback-Leibler divergence of both probability distributions and random vari-
ables. Then we may write (the inequality is an easy consequence of the chain rule for Kullback-
Leibler divergence)

KL(B,B′) = KL
(
(Z + S) + T, (Z ′ + S) + T

)
≤ KL

(
(Z + S, T ), (Z ′ + S, T )

)
= KL

(
Z + S,Z ′ + S

)
.

Let sk = P(S = k) for k = −1, 0, . . . , `+ 1. Using the equalities

sk =

(
`

k

)
qk(1− q)`−k =

q

1− q
`− k + 1

k

(
`

k − 1

)
qk−1(1− q)`−k+1 =

q

1− q
`− k + 1

k
sk−1,

which holds for 1 ≤ k ≤ `+ 1, we obtain

KL(Z + S,Z ′ + S) =
`+1∑
k=0

P(V = k) log

(
P(Z + S = k)

P(Z ′ + S = k)

)

=
`+1∑
k=0

P(V = k) log

(
psk−1 + (1− p)sk
p′sk−1 + (1− p′)sk

)

=
`+1∑
k=0

P(V = k) log

(
p1−q

q
k + (1− p)(`− k + 1)

p′ 1−q
q
k + (1− p′)(`− k + 1)

)
= E log

(
(p− q)V + (1− p)q(`+ 1)

(p′ − q)V + (1− p′)q(`+ 1)

)
. (14)
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First case: q = p′.
By Jensen’s inequality, using that EV = p′(`+ 1) + p− p′ in this case, we get

KL(Z + S,Z ′ + S) ≤ log

(
(p− p′)E(V ) + (1− p)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
(p− p′)2 + (1− p′)p′(`+ 1)

(1− p′)p′(`+ 1)

)
= log

(
1 +

(p− p′)2

(1− p′)p′(`+ 1)

)
≤ (p− p′)2

(1− p′)p′(`+ 1)
.

Second case: q = p.
In this case, V is a binomial distribution with parameters `+ 1 and p. From (14), we have

KL(Z + S,Z ′ + S) ≤ −E log

(
(p′ − p)V + (1− p′)p(`+ 1)

(1− p)p(`+ 1)

)
≤ −E log

(
1 +

(p′ − p)(V − EV )

(1− p)p(`+ 1)

)
. (15)

To conclude, we will use the following lemma.

Lemma 5 The following inequality holds for any x ≥ x0 with x0 ∈ (0, 1):

− log(x) ≤ −(x− 1) +
(x− 1)2

2x0
.

Proof Introduce f(x) = −(x − 1) + (x−1)2
2x0

+ log(x). We have f ′(x) = −1 + x−1
x0

+ 1
x
, and

f ′′(x) = 1
x0
− 1

x2
. From f ′(x0) = 0, we get that f ′ is negative on (x0, 1) and positive on (1,+∞).

This leads to f nonnegative on [x0,+∞).

Finally, from Lemma 5 and (15), using x0 = 1−p′
1−p , we obtain

KL(Z + S,Z ′ + S) ≤
(

p′ − p
(1− p)p(`+ 1)

)2E[(V − EV )2]

2x0

=

(
p′ − p

(1− p)p(`+ 1)

)2
(`+ 1)p(1− p)2

2(1− p′)

=
(p′ − p)2

2(1− p′)(`+ 1)p
.
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