
Foundations and TrendsR© in Machine Learning
Vol. 8, No. 3-4 (2015) 231–357
c© 2015 S. Bubeck

DOI: 10.1561/2200000050

Convex Optimization: Algorithms and
Complexity

Sébastien Bubeck
Theory Group, Microsoft Research

sebubeck@microsoft.com

Contents

1 Introduction 232
1.1 Some convex optimization problems in machine learning . 233
1.2 Basic properties of convexity 234
1.3 Why convexity? . 237
1.4 Black-box model . 238
1.5 Structured optimization 240
1.6 Overview of the results and disclaimer 240

2 Convex optimization in finite dimension 244
2.1 The center of gravity method 245
2.2 The ellipsoid method . 247
2.3 Vaidya’s cutting plane method 250
2.4 Conjugate gradient . 258

3 Dimension-free convex optimization 262
3.1 Projected subgradient descent for Lipschitz functions . . . 263
3.2 Gradient descent for smooth functions 266
3.3 Conditional gradient descent, aka Frank-Wolfe 271
3.4 Strong convexity . 276
3.5 Lower bounds . 279
3.6 Geometric descent . 284

ii

iii

3.7 Nesterov’s accelerated gradient descent 289

4 Almost dimension-free convex optimization in non-Euclidean
spaces 296
4.1 Mirror maps . 298
4.2 Mirror descent . 299
4.3 Standard setups for mirror descent 301
4.4 Lazy mirror descent, aka Nesterov’s dual averaging 303
4.5 Mirror prox . 305
4.6 The vector field point of view on MD, DA, and MP 307

5 Beyond the black-box model 309
5.1 Sum of a smooth and a simple non-smooth term 310
5.2 Smooth saddle-point representation of a non-smooth function312
5.3 Interior point methods . 318

6 Convex optimization and randomness 329
6.1 Non-smooth stochastic optimization 330
6.2 Smooth stochastic optimization and mini-batch SGD . . . 332
6.3 Sum of smooth and strongly convex functions 334
6.4 Random coordinate descent 338
6.5 Acceleration by randomization for saddle points 342
6.6 Convex relaxation and randomized rounding 343
6.7 Random walk based methods 347

Acknowledgements

References

350

351

Abstract

This monograph presents the main complexity theorems in convex op-
timization and their corresponding algorithms. Starting from the fun-
damental theory of black-box optimization, the material progresses to-
wards recent advances in structural optimization and stochastic op-
timization. Our presentation of black-box optimization, strongly in-
fluenced by Nesterov’s seminal book and Nemirovski’s lecture notes,
includes the analysis of cutting plane methods, as well as (acceler-
ated) gradient descent schemes. We also pay special attention to non-
Euclidean settings (relevant algorithms include Frank-Wolfe, mirror
descent, and dual averaging) and discuss their relevance in machine
learning. We provide a gentle introduction to structural optimization
with FISTA (to optimize a sum of a smooth and a simple non-smooth
term), saddle-point mirror prox (Nemirovski’s alternative to Nesterov’s
smoothing), and a concise description of interior point methods. In
stochastic optimization we discuss stochastic gradient descent, mini-
batches, random coordinate descent, and sublinear algorithms. We also
briefly touch upon convex relaxation of combinatorial problems and the
use of randomness to round solutions, as well as random walks based
methods.

S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and
TrendsR© in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.
DOI: 10.1561/2200000050.

1

Introduction

The central objects of our study are convex functions and convex sets
in Rn.

Definition 1.1 (Convex sets and convex functions). A set X ⊂ Rn is
said to be convex if it contains all of its segments, that is

∀(x, y, γ) ∈ X × X × [0, 1], (1− γ)x+ γy ∈ X .

A function f : X → R is said to be convex if it always lies below its
chords, that is

∀(x, y, γ) ∈ X × X × [0, 1], f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y).

We are interested in algorithms that take as input a convex set X
and a convex function f and output an approximate minimum of f
over X . We write compactly the problem of finding the minimum of f
over X as

min. f(x)
s.t. x ∈ X .

In the following we will make more precise how the set of constraints X
and the objective function f are specified to the algorithm. Before that

232

1.1. Some convex optimization problems in machine learning 233

we proceed to give a few important examples of convex optimization
problems in machine learning.

1.1 Some convex optimization problems in machine learning

Many fundamental convex optimization problems in machine learning
take the following form:

min.
x∈Rn

m∑
i=1

fi(x) + λR(x), (1.1)

where the functions f1, . . . , fm,R are convex and λ ≥ 0 is a fixed
parameter. The interpretation is that fi(x) represents the cost of using
x on the ith element of some data set, and R(x) is a regularization term
which enforces some “simplicity” in x. We discuss now major instances
of (1.1). In all cases one has a data set of the form (wi, yi) ∈ Rn×Y, i =
1, . . . ,m and the cost function fi depends only on the pair (wi, yi). We
refer to Hastie et al. [2001], Schölkopf and Smola [2002], Shalev-Shwartz
and Ben-David [2014] for more details on the origin of these important
problems. The mere objective of this section is to expose the reader to a
few concrete convex optimization problems which are routinely solved.

In classification one has Y = {−1, 1}. Taking fi(x) = max(0, 1 −
yix
>wi) (the so-called hinge loss) and R(x) = ‖x‖22 one obtains the

SVM problem. On the other hand taking fi(x) = log(1+exp(−yix>wi))
(the logistic loss) and again R(x) = ‖x‖22 one obtains the (regularized)
logistic regression problem.

In regression one has Y = R. Taking fi(x) = (x>wi − yi)2 and
R(x) = 0 one obtains the vanilla least-squares problem which can be
rewritten in vector notation as

min.
x∈Rn

‖Wx− Y ‖22,

where W ∈ Rm×n is the matrix with w>i on the ith row and Y =
(y1, . . . , yn)>. With R(x) = ‖x‖22 one obtains the ridge regression prob-
lem, while with R(x) = ‖x‖1 this is the LASSO problem Tibshirani
[1996].

Our last two examples are of a slightly different flavor. In particular
the design variable x is now best viewed as a matrix, and thus we

234 Introduction

denote it by a capital letterX. The sparse inverse covariance estimation
problem can be written as follows, given some empirical covariance
matrix Y ,

min. Tr(XY)− logdet(X) + λ‖X‖1
s.t. X ∈ Rn×n, X> = X,X � 0.

Intuitively the above problem is simply a regularized maximum likeli-
hood estimator (under a Gaussian assumption).

Finally we introduce the convex version of the matrix completion
problem. Here our data set consists of observations of some of the
entries of an unknown matrix Y , and we want to “complete" the unob-
served entries of Y in such a way that the resulting matrix is “simple"
(in the sense that it has low rank). After some massaging (see Can-
dès and Recht [2009]) the (convex) matrix completion problem can be
formulated as follows:

min. Tr(X)
s.t. X ∈ Rn×n, X> = X,X � 0, Xi,j = Yi,j for (i, j) ∈ Ω,

where Ω ⊂ [n]2 and (Yi,j)(i,j)∈Ω are given.

1.2 Basic properties of convexity

A basic result about convex sets that we shall use extensively is the
Separation Theorem.

Theorem 1.1 (Separation Theorem). Let X ⊂ Rn be a closed convex
set, and x0 ∈ Rn \ X . Then, there exists w ∈ Rn and t ∈ R such that

w>x0 < t, and ∀x ∈ X , w>x ≥ t.

Note that if X is not closed then one can only guarantee that
w>x0 ≤ w>x,∀x ∈ X (and w 6= 0). This immediately implies the Sup-
porting Hyperplane Theorem (∂X denotes the boundary of X , that is
the closure without the interior):

Theorem 1.2 (Supporting Hyperplane Theorem). Let X ⊂ Rn be a con-
vex set, and x0 ∈ ∂X . Then, there exists w ∈ Rn, w 6= 0 such that

∀x ∈ X , w>x ≥ w>x0.

1.2. Basic properties of convexity 235

We introduce now the key notion of subgradients.

Definition 1.2 (Subgradients). Let X ⊂ Rn, and f : X → R. Then
g ∈ Rn is a subgradient of f at x ∈ X if for any y ∈ X one has

f(x)− f(y) ≤ g>(x− y).

The set of subgradients of f at x is denoted ∂f(x).

To put it differently, for any x ∈ X and g ∈ ∂f(x), f is above the
linear function y 7→ f(x)+g>(y−x). The next result shows (essentially)
that a convex functions always admit subgradients.

Proposition 1.1 (Existence of subgradients). Let X ⊂ Rn be convex,
and f : X → R. If ∀x ∈ X , ∂f(x) 6= ∅ then f is convex. Conversely
if f is convex then for any x ∈ int(X), ∂f(x) 6= ∅. Furthermore if f is
convex and differentiable at x then ∇f(x) ∈ ∂f(x).

Before going to the proof we recall the definition of the epigraph of
a function f : X → R:

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)}.

It is obvious that a function is convex if and only if its epigraph is a
convex set.

Proof. The first claim is almost trivial: let g ∈ ∂f((1− γ)x+ γy), then
by definition one has

f((1− γ)x+ γy) ≤ f(x) + γg>(y − x),
f((1− γ)x+ γy) ≤ f(y) + (1− γ)g>(x− y),

which clearly shows that f is convex by adding the two (appropriately
rescaled) inequalities.

Now let us prove that a convex function f has subgradients in the
interior of X . We build a subgradient by using a supporting hyperplane
to the epigraph of the function. Let x ∈ X . Then clearly (x, f(x)) ∈
∂epi(f), and epi(f) is a convex set. Thus by using the Supporting
Hyperplane Theorem, there exists (a, b) ∈ Rn × R such that

a>x+ bf(x) ≥ a>y + bt,∀(y, t) ∈ epi(f). (1.2)

236 Introduction

Clearly, by letting t tend to infinity, one can see that b ≤ 0. Now let
us assume that x is in the interior of X . Then for ε > 0 small enough,
y = x+εa ∈ X , which implies that b cannot be equal to 0 (recall that if
b = 0 then necessarily a 6= 0 which allows to conclude by contradiction).
Thus rewriting (1.2) for t = f(y) one obtains

f(x)− f(y) ≤ 1
|b|
a>(x− y).

Thus a/|b| ∈ ∂f(x) which concludes the proof of the second claim.

Finally let f be a convex and differentiable function. Then by defi-
nition:

f(y) ≥ f((1− γ)x+ γy)− (1− γ)f(x)
γ

= f(x) + f(x+ γ(y − x))− f(x)
γ

→
γ→0

f(x) +∇f(x)>(y − x),

which shows that ∇f(x) ∈ ∂f(x).

In several cases of interest the set of contraints can have an empty
interior, in which case the above proposition does not yield any informa-
tion. However it is easy to replace int(X) by ri(X) -the relative interior
of X - which is defined as the interior of X when we view it as subset of
the affine subspace it generates. Other notions of convex analysis will
prove to be useful in some parts of this text. In particular the notion
of closed convex functions is convenient to exclude pathological cases:
these are the convex functions with closed epigraphs. Sometimes it is
also useful to consider the extension of a convex function f : X → R to
a function from Rn to R by setting f(x) = +∞ for x 6∈ X . In convex
analysis one uses the term proper convex function to denote a convex
function with values in R ∪ {+∞} such that there exists x ∈ Rn with
f(x) < +∞. From now on all convex functions will be closed,
and if necessary we consider also their proper extension. We
refer the reader to Rockafellar [1970] for an extensive discussion of these
notions.

1.3. Why convexity? 237

1.3 Why convexity?

The key to the algorithmic success in minimizing convex functions is
that these functions exhibit a local to global phenomenon. We have
already seen one instance of this in Proposition 1.1, where we showed
that ∇f(x) ∈ ∂f(x): the gradient ∇f(x) contains a priori only local
information about the function f around x while the subdifferential
∂f(x) gives a global information in the form of a linear lower bound on
the entire function. Another instance of this local to global phenomenon
is that local minima of convex functions are in fact global minima:

Proposition 1.2 (Local minima are global minima). Let f be convex. If x
is a local minimum of f then x is a global minimum of f . Furthermore
this happens if and only if 0 ∈ ∂f(x).

Proof. Clearly 0 ∈ ∂f(x) if and only if x is a global minimum of f .
Now assume that x is local minimum of f . Then for γ small enough
one has for any y,

f(x) ≤ f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y),

which implies f(x) ≤ f(y) and thus x is a global minimum of f .

The nice behavior of convex functions will allow for very fast algo-
rithms to optimize them. This alone would not be sufficient to justify
the importance of this class of functions (after all constant functions
are pretty easy to optimize). However it turns out that surprisingly
many optimization problems admit a convex (re)formulation. The ex-
cellent book Boyd and Vandenberghe [2004] describes in great details
the various methods that one can employ to uncover the convex aspects
of an optimization problem. We will not repeat these arguments here,
but we have already seen that many famous machine learning problems
(SVM, ridge regression, logistic regression, LASSO, sparse covariance
estimation, and matrix completion) are formulated as convex problems.

We conclude this section with a simple extension of the optimality
condition “0 ∈ ∂f(x)” to the case of constrained optimization. We state
this result in the case of a differentiable function for sake of simplicity.

238 Introduction

Proposition 1.3 (First order optimality condition). Let f be convex and
X a closed convex set on which f is differentiable. Then

x∗ ∈ argmin
x∈X

f(x),

if and only if one has

∇f(x∗)>(x∗ − y) ≤ 0,∀y ∈ X .

Proof. The “if" direction is trivial by using that a gradient is also
a subgradient. For the “only if" direction it suffices to note that if
∇f(x)>(y − x) < 0, then f is locally decreasing around x on the
line to y (simply consider h(t) = f(x + t(y − x)) and note that
h′(0) = ∇f(x)>(y − x)).

1.4 Black-box model

We now describe our first model of “input" for the objective function
and the set of constraints. In the black-box model we assume that
we have unlimited computational resources, the set of constraint X is
known, and the objective function f : X → R is unknown but can be
accessed through queries to oracles:

• A zeroth order oracle takes as input a point x ∈ X and outputs
the value of f at x.

• A first order oracle takes as input a point x ∈ X and outputs a
subgradient of f at x.

In this context we are interested in understanding the oracle complexity
of convex optimization, that is how many queries to the oracles are
necessary and sufficient to find an ε-approximate minima of a convex
function. To show an upper bound on the sample complexity we need to
propose an algorithm, while lower bounds are obtained by information
theoretic reasoning (we need to argue that if the number of queries is
“too small" then we don’t have enough information about the function
to identify an ε-approximate solution).

1.4. Black-box model 239

From a mathematical point of view, the strength of the black-box
model is that it will allow us to derive a complete theory of convex op-
timization, in the sense that we will obtain matching upper and lower
bounds on the oracle complexity for various subclasses of interesting
convex functions. While the model by itself does not limit our compu-
tational resources (for instance any operation on the constraint set X is
allowed) we will of course pay special attention to the algorithms’ com-
putational complexity (i.e., the number of elementary operations that
the algorithm needs to do). We will also be interested in the situation
where the set of constraint X is unknown and can only be accessed
through a separation oracle: given x ∈ Rn, it outputs either that x is
in X , or if x 6∈ X then it outputs a separating hyperplane between x
and X .

The black-box model was essentially developed in the early days
of convex optimization (in the Seventies) with Nemirovski and Yudin
[1983] being still an important reference for this theory (see also Ne-
mirovski [1995]). In the recent years this model and the corresponding
algorithms have regained a lot of popularity, essentially for two reasons:

• It is possible to develop algorithms with dimension-free oracle
complexity which is quite attractive for optimization problems in
very high dimension.

• Many algorithms developed in this model are robust to noise
in the output of the oracles. This is especially interesting for
stochastic optimization, and very relevant to machine learning
applications. We will explore this in details in Chapter 6.

Chapter 2, Chapter 3 and Chapter 4 are dedicated to the study of
the black-box model (noisy oracles are discussed in Chapter 6). We do
not cover the setting where only a zeroth order oracle is available, also
called derivative free optimization, and we refer to Conn et al. [2009],
Audibert et al. [2011] for further references on this.

240 Introduction

1.5 Structured optimization

The black-box model described in the previous section seems extremely
wasteful for the applications we discussed in Section 1.1. Consider for
instance the LASSO objective: x 7→ ‖Wx− y‖22 + ‖x‖1. We know this
function globally, and assuming that we can only make local queries
through oracles seem like an artificial constraint for the design of al-
gorithms. Structured optimization tries to address this observation.
Ultimately one would like to take into account the global structure of
both f and X in order to propose the most efficient optimization pro-
cedure. An extremely powerful hammer for this task are the Interior
Point Methods. We will describe this technique in Chapter 5 alongside
with other more recent techniques such as FISTA or Mirror Prox.

We briefly describe now two classes of optimization problems for
which we will be able to exploit the structure very efficiently, these
are the LPs (Linear Programs) and SDPs (Semi-Definite Programs).
Ben-Tal and Nemirovski [2001] describe a more general class of Conic
Programs but we will not go in that direction here.

The class LP consists of problems where f(x) = c>x for some c ∈
Rn, and X = {x ∈ Rn : Ax ≤ b} for some A ∈ Rm×n and b ∈ Rm.

The class SDP consists of problems where the optimization vari-
able is a symmetric matrix X ∈ Rn×n. Let Sn be the space of n × n
symmetric matrices (respectively Sn+ is the space of positive semi-
definite matrices), and let 〈·, ·〉 be the Frobenius inner product (re-
call that it can be written as 〈A,B〉 = Tr(A>B)). In the class SDP
the problems are of the following form: f(x) = 〈X,C〉 for some
C ∈ Rn×n, and X = {X ∈ Sn+ : 〈X,Ai〉 ≤ bi, i ∈ {1, . . . ,m}} for
some A1, . . . , Am ∈ Rn×n and b ∈ Rm. Note that the matrix comple-
tion problem described in Section 1.1 is an example of an SDP.

1.6 Overview of the results and disclaimer

The overarching aim of this monograph is to present the main complex-
ity theorems in convex optimization and the corresponding algorithms.
We focus on five major results in convex optimization which give the
overall structure of the text: the existence of efficient cutting-plane

1.6. Overview of the results and disclaimer 241

methods with optimal oracle complexity (Chapter 2), a complete char-
acterization of the relation between first order oracle complexity and
curvature in the objective function (Chapter 3), first order methods
beyond Euclidean spaces (Chapter 4), non-black box methods (such as
interior point methods) can give a quadratic improvement in the num-
ber of iterations with respect to optimal black-box methods (Chapter
5), and finally noise robustness of first order methods (Chapter 6). Ta-
ble 1.1 can be used as a quick reference to the results proved in Chapter
2 to Chapter 5, as well as some of the results of Chapter 6 (this last
chapter is the most relevant to machine learning but the results are
also slightly more specific which make them harder to summarize).

An important disclaimer is that the above selection leaves out meth-
ods derived from duality arguments, as well as the two most popular
research avenues in convex optimization: (i) using convex optimization
in non-convex settings, and (ii) practical large-scale algorithms. Entire
books have been written on these topics, and new books have yet to be
written on the impressive collection of new results obtained for both
(i) and (ii) in the past five years.

A few of the blatant omissions regarding (i) include (a) the theory
of submodular optimization (see Bach [2013]), (b) convex relaxations of
combinatorial problems (a short example is given in Section 6.6), and
(c) methods inspired from convex optimization for non-convex prob-
lems such as low-rank matrix factorization (see e.g. Jain et al. [2013]
and references therein), neural networks optimization, etc.

With respect to (ii) the most glaring omissions include (a) heuris-
tics (the only heuristic briefly discussed here is the non-linear conjugate
gradient in Section 2.4), (b) methods for distributed systems, and (c)
adaptivity to unknown parameters. Regarding (a) we refer to Nocedal
and Wright [2006] where the most practical algorithms are discussed in
great details (e.g., quasi-newton methods such as BFGS and L-BFGS,
primal-dual interior point methods, etc.). The recent survey Boyd
et al. [2011] discusses the alternating direction method of multipliers
(ADMM) which is a popular method to address (b). Finally (c) is a
subtle and important issue. In the entire monograph the emphasis
is on presenting the algorithms and proofs in the simplest way, and

242 Introduction

thus for sake of convenience we assume that the relevant parameters
describing the regularity and curvature of the objective function
(Lipschitz constant, smoothness constant, strong convexity parameter)
are known and can be used to tune the algorithm’s own parameters.
Line search is a powerful technique to replace the knowledge of these
parameters and it is heavily used in practice, see again Nocedal and
Wright [2006]. We observe however that from a theoretical point of
view (c) is only a matter of logarithmic factors as one can always
run in parallel several copies of the algorithm with different guesses
for the values of the parameters1. Overall the attitude of this text
with respect to (ii) is best summarized by a quote of Thomas Cover:
“theory is the first term in the Taylor series of practice”, Cover [1992].

Notation. We always denote by x∗ a point in X such that f(x∗) =
minx∈X f(x) (note that the optimization problem under consideration
will always be clear from the context). In particular we always assume
that x∗ exists. For a vector x ∈ Rn we denote by x(i) its ith coordinate.
The dual of a norm ‖ · ‖ (defined later) will be denoted either ‖ · ‖∗ or
‖·‖∗ (depending on whether the norm already comes with a subscript).
Other notation are standard (e.g., In for the n× n identity matrix, �
for the positive semi-definite order on matrices, etc).

1Note that this trick does not work in the context of Chapter 6.

1.6. Overview of the results and disclaimer 243

f Algorithm Rate # Iter Cost/iter

non-smooth center of
gravity exp

(
− t
n

)
n log

(
1
ε

) 1 ∇,
1 n-dim

∫
non-smooth ellipsoid

method
R
r

exp
(
− t
n2

)
n2 log

(
R
rε

) 1 ∇,
mat-vec ×

non-smooth Vaidya Rn
r

exp
(
− t
n

)
n log

(
Rn
rε

) 1 ∇,
mat-mat ×

quadratic CG
exact

exp
(
− t
κ

) n
κ log

(
1
ε

) 1 ∇

non-smooth,
Lipschitz PGD RL/

√
t R2L2/ε2 1 ∇,

1 proj.

smooth PGD βR2/t βR2/ε
1 ∇,
1 proj.

smooth AGD βR2/t2 R
√
β/ε 1 ∇

smooth
(any norm) FW βR2/t βR2/ε

1 ∇,
1 LP

strong.
conv.,

Lipschitz
PGD L2/(αt) L2/(αε) 1 ∇ ,

1 proj.
strong.
conv.,
smooth

PGD R2 exp
(
− t
κ

)
κ log

(
R2

ε

) 1 ∇ ,
1 proj.

strong.
conv.,
smooth

AGD R2 exp
(
− t√

κ

) √
κ log

(
R2

ε

)
1 ∇

f + g,
f smooth,
g simple

FISTA βR2/t2 R
√
β/ε

1 ∇ of f
Prox of g

max
y∈Y

ϕ(x, y),
ϕ smooth

SP-MP βR2/t βR2/ε
MD on X
MD on Y

linear,
X with F
ν-self-conc.

IPM ν exp
(
− t√

ν

) √
ν log

(
ν
ε

) Newton
step on F

non-smooth SGD BL/
√
t B2L2/ε2 1 stoch. ∇,

1 proj.
non-smooth,
strong. conv. SGD B2/(αt) B2/(αε) 1 stoch. ∇,

1 proj.
f = 1

m

∑
fi

fi smooth
strong. conv.

SVRG – (m+ κ) log
(

1
ε

)
1 stoch. ∇

Table 1.1: Summary of the results proved in Chapter 2 to Chapter 5 and some of
the results in Chapter 6.

2

Convex optimization in finite dimension

Let X ⊂ Rn be a convex body (that is a compact convex set with
non-empty interior), and f : X → [−B,B] be a continuous and convex
function. Let r,R > 0 be such that X is contained in an Euclidean ball
of radius R (respectively it contains an Euclidean ball of radius r). In
this chapter we give several black-box algorithms to solve

min. f(x)
s.t. x ∈ X .

As we will see these algorithms have an oracle complexity which is
linear (or quadratic) in the dimension, hence the title of the chapter
(in the next chapter the oracle complexity will be independent of the
dimension). An interesting feature of the methods discussed here is
that they only need a separation oracle for the constraint set X . In the
literature such algorithms are often referred to as cutting plane methods.
In particular these methods can be used to find a point x ∈ X given
only a separating oracle for X (this is also known as the feasibility
problem).

244

2.1. The center of gravity method 245

2.1 The center of gravity method

We consider the following simple iterative algorithm1: let S1 = X , and
for t ≥ 1 do the following:

1. Compute
ct = 1

vol(St)

∫
x∈St

xdx. (2.1)

2. Query the first order oracle at ct and obtain wt ∈ ∂f(ct). Let

St+1 = St ∩ {x ∈ Rn : (x− ct)>wt ≤ 0}.

If stopped after t queries to the first order oracle then we use t queries
to a zeroth order oracle to output

xt ∈ argmin
1≤r≤t

f(cr).

This procedure is known as the center of gravity method, it was dis-
covered independently on both sides of the Wall by Levin [1965] and
Newman [1965].

Theorem 2.1. The center of gravity method satisfies

f(xt)−min
x∈X

f(x) ≤ 2B
(

1− 1
e

)t/n
.

Before proving this result a few comments are in order.
To attain an ε-optimal point the center of gravity method requires

O(n log(2B/ε)) queries to both the first and zeroth order oracles. It can
be shown that this is the best one can hope for, in the sense that for
ε small enough one needs Ω(n log(1/ε)) calls to the oracle in order to
find an ε-optimal point, see Nemirovski and Yudin [1983] for a formal
proof.

The rate of convergence given by Theorem 2.1 is exponentially fast.
In the optimization literature this is called a linear rate as the (esti-
mated) error at iteration t+1 is linearly related to the error at iteration
t.

1As a warm-up we assume in this section that X is known. It should be clear
from the arguments in the next section that in fact the same algorithm would work
if initialized with S1 ⊃ X .

246 Convex optimization in finite dimension

The last and most important comment concerns the computational
complexity of the method. It turns out that finding the center of gravity
ct is a very difficult problem by itself, and we do not have computa-
tionally efficient procedure to carry out this computation in general. In
Section 6.7 we will discuss a relatively recent (compared to the 50 years
old center of gravity method!) randomized algorithm to approximately
compute the center of gravity. This will in turn give a randomized
center of gravity method which we will describe in detail.

We now turn to the proof of Theorem 2.1. We will use the following
elementary result from convex geometry:

Lemma 2.2 (Grünbaum [1960]). Let K be a centered convex set, i.e.,∫
x∈K xdx = 0, then for any w ∈ Rn, w 6= 0, one has

Vol
(
K ∩ {x ∈ Rn : x>w ≥ 0}

)
≥ 1
e

Vol(K).

We now prove Theorem 2.1.

Proof. Let x∗ be such that f(x∗) = minx∈X f(x). Since wt ∈ ∂f(ct)
one has

f(ct)− f(x) ≤ w>t (ct − x).

and thus

St \St+1 ⊂ {x ∈ X : (x−ct)>wt > 0} ⊂ {x ∈ X : f(x) > f(ct)}, (2.2)

which clearly implies that one can never remove the optimal point
from our sets in consideration, that is x∗ ∈ St for any t. Without loss
of generality we can assume that we always have wt 6= 0, for otherwise
one would have f(ct) = f(x∗) which immediately conludes the proof.
Now using that wt 6= 0 for any t and Lemma 2.2 one clearly obtains

vol(St+1) ≤
(

1− 1
e

)t
vol(X).

For ε ∈ [0, 1], let Xε = {(1 − ε)x∗ + εx, x ∈ X}. Note that vol(Xε) =
εnvol(X). These volume computations show that for ε >

(
1− 1

e

)t/n
one has vol(Xε) > vol(St+1). In particular this implies that for ε >(
1− 1

e

)t/n
, there must exist a time r ∈ {1, . . . , t}, and xε ∈ Xε, such

2.2. The ellipsoid method 247

that xε ∈ Sr and xε 6∈ Sr+1. In particular by (2.2) one has f(cr) <
f(xε). On the other hand by convexity of f one clearly has f(xε) ≤
f(x∗) + 2εB. This concludes the proof.

2.2 The ellipsoid method

Recall that an ellipsoid is a convex set of the form

E = {x ∈ Rn : (x− c)>H−1(x− c) ≤ 1},

where c ∈ Rn, and H is a symmetric positive definite matrix. Geomet-
rically c is the center of the ellipsoid, and the semi-axes of E are given
by the eigenvectors of H, with lengths given by the square root of the
corresponding eigenvalues.

We give now a simple geometric lemma, which is at the heart of the
ellipsoid method.

Lemma 2.3. Let E0 = {x ∈ Rn : (x − c0)>H−1
0 (x − c0) ≤ 1}. For any

w ∈ Rn, w 6= 0, there exists an ellipsoid E such that

E ⊃ {x ∈ E0 : w>(x− c0) ≤ 0}, (2.3)

and
vol(E) ≤ exp

(
− 1

2n

)
vol(E0). (2.4)

Furthermore for n ≥ 2 one can take E = {x ∈ Rn : (x−c)>H−1(x−c) ≤
1} where

c = c0 −
1

n+ 1
H0w√
w>H0w

, (2.5)

H = n2

n2 − 1

(
H0 −

2
n+ 1

H0ww
>H0

w>H0w

)
. (2.6)

Proof. For n = 1 the result is obvious, in fact we even have vol(E) ≤
1
2vol(E0).

For n ≥ 2 one can simply verify that the ellipsoid given by (2.5)
and (2.6) satisfy the required properties (2.3) and (2.4). Rather than
bluntly doing these computations we will show how to derive (2.5) and
(2.6). As a by-product this will also show that the ellipsoid defined by

248 Convex optimization in finite dimension

(2.5) and (2.6) is the unique ellipsoid of minimal volume that satisfy
(2.3). Let us first focus on the case where E0 is the Euclidean ball
B = {x ∈ Rn : x>x ≤ 1}. We momentarily assume that w is a unit
norm vector.

By doing a quick picture, one can see that it makes sense to look
for an ellipsoid E that would be centered at c = −tw, with t ∈ [0, 1]
(presumably t will be small), and such that one principal direction
is w (with inverse squared semi-axis a > 0), and the other principal
directions are all orthogonal to w (with the same inverse squared semi-
axes b > 0). In other words we are looking for E = {x : (x−c)>H−1(x−
c) ≤ 1} with

c = −tw, and H−1 = aww> + b(In − ww>).

Now we have to express our constraints on the fact that E should
contain the half Euclidean ball {x ∈ B : x>w ≤ 0}. Since we are also
looking for E to be as small as possible, it makes sense to ask for E
to "touch" the Euclidean ball, both at x = −w, and at the equator
∂B ∩ w⊥. The former condition can be written as:

(−w − c)>H−1(−w − c) = 1⇔ (t− 1)2a = 1,

while the latter is expressed as:

∀y ∈ ∂B ∩ w⊥, (y − c)>H−1(y − c) = 1⇔ b+ t2a = 1.

As one can see from the above two equations, we are still free to choose
any value for t ∈ [0, 1/2) (the fact that we need t < 1/2 comes from
b = 1−

(
t
t−1

)2
> 0). Quite naturally we take the value that minimizes

the volume of the resulting ellipsoid. Note that
vol(E)
vol(B) = 1√

a

(1√
b

)n−1
= 1√

1
(1−t)2

(
1−

(
t

1−t

)2
)n−1

= 1√
f
(

1
1−t

) ,
where f(h) = h2(2h−h2)n−1. Elementary computations show that the
maximum of f (on [1, 2]) is attained at h = 1 + 1

n (which corresponds
to t = 1

n+1), and the value is(
1 + 1

n

)2 (
1− 1

n2

)n−1
≥ exp

(1
n

)
,

2.2. The ellipsoid method 249

where the lower bound follows again from elementary computations.
Thus we showed that, for E0 = B, (2.3) and (2.4) are satisfied with the
ellipsoid given by the set of points x satisfying:(

x+ w/‖w‖2
n+ 1

)>(n2 − 1
n2 In + 2(n+ 1)

n2
ww>

‖w‖22

)(
x+ w/‖w‖2

n+ 1

)
≤ 1.

(2.7)
We consider now an arbitrary ellipsoid E0 = {x ∈ Rn : (x −

c0)>H−1
0 (x− c0) ≤ 1}. Let Φ(x) = c0 +H

1/2
0 x, then clearly E0 = Φ(B)

and {x : w>(x− c0) ≤ 0} = Φ({x : (H1/2
0 w)>x ≤ 0}). Thus in this case

the image by Φ of the ellipsoid given in (2.7) with w replaced by H1/2
0 w

will satisfy (2.3) and (2.4). It is easy to see that this corresponds to an
ellipsoid defined by

c = c0 −
1

n+ 1
H0w√
w>H0w

,

H−1 =
(

1− 1
n2

)
H−1

0 + 2(n+ 1)
n2

ww>

w>H0w
. (2.8)

Applying Sherman-Morrison formula to (2.8) one can recover (2.6)
which concludes the proof.

We describe now the ellipsoid method, which only assumes a sepa-
ration oracle for the constraint set X (in particular it can be used to
solve the feasibility problem mentioned at the beginning of the chap-
ter). Let E0 be the Euclidean ball of radius R that contains X , and let
c0 be its center. Denote also H0 = R2In. For t ≥ 0 do the following:

1. If ct 6∈ X then call the separation oracle to obtain a separating
hyperplane wt ∈ Rn such that X ⊂ {x : (x − ct)>wt ≤ 0},
otherwise call the first order oracle at ct to obtain wt ∈ ∂f(ct).

2. Let Et+1 = {x : (x − ct+1)>H−1
t+1(x − ct+1) ≤ 1} be the ellipsoid

given in Lemma 2.3 that contains {x ∈ Et : (x − ct)>wt ≤ 0},
that is

ct+1 = ct −
1

n+ 1
Htw√
w>Htw

,

Ht+1 = n2

n2 − 1

(
Ht −

2
n+ 1

Htww
>Ht

w>Htw

)
.

250 Convex optimization in finite dimension

If stopped after t iterations and if {c1, . . . , ct}∩X 6= ∅, then we use the
zeroth order oracle to output

xt ∈ argmin
c∈{c1,...,ct}∩X

f(cr).

The following rate of convergence can be proved with the exact same
argument than for Theorem 2.1 (observe that at step t one can remove
a point in X from the current ellipsoid only if ct ∈ X).

Theorem 2.4. For t ≥ 2n2 log(R/r) the ellipsoid method satisfies
{c1, . . . , ct} ∩ X 6= ∅ and

f(xt)−min
x∈X

f(x) ≤ 2BR
r

exp
(
− t

2n2

)
.

We observe that the oracle complexity of the ellipsoid method is
much worse than the one of the center gravity method, indeed the for-
mer needs O(n2 log(1/ε)) calls to the oracles while the latter requires
only O(n log(1/ε)) calls. However from a computational point of view
the situation is much better: in many cases one can derive an efficient
separation oracle, while the center of gravity method is basically al-
ways intractable. This is for instance the case in the context of LPs
and SDPs: with the notation of Section 1.5 the computational com-
plexity of the separation oracle for LPs is O(mn) while for SDPs it is
O(max(m,n)n2) (we use the fact that the spectral decomposition of a
matrix can be done in O(n3) operations). This gives an overall complex-
ity of O(max(m,n)n3 log(1/ε)) for LPs and O(max(m,n2)n6 log(1/ε))
for SDPs. We note however that the ellipsoid method is almost never
used in practice, essentially because the method is too rigid to exploit
the potential easiness of real problems (e.g., the volume decrease given
by (2.4) is essentially always tight).

2.3 Vaidya’s cutting plane method

We focus here on the feasibility problem (it should be clear from the
previous sections how to adapt the argument for optimization). We
have seen that for the feasibility problem the center of gravity has
a O(n) oracle complexity and unclear computational complexity (see

2.3. Vaidya’s cutting plane method 251

Section 6.7 for more on this), while the ellipsoid method has oracle
complexity O(n2) and computational complexity O(n4). We describe
here the beautiful algorithm of Vaidya [1989, 1996] which has oracle
complexity O(n log(n)) and computational complexity O(n4), thus get-
ting the best of both the center of gravity and the ellipsoid method. In
fact the computational complexity can even be improved further, and
the recent breakthrough Lee et al. [2015] shows that it can essentially
(up to logarithmic factors) be brought down to O(n3).

This section, while giving a fundamental algorithm, should probably
be skipped on a first reading. In particular we use several concepts from
the theory of interior point methods which are described in Section 5.3.

2.3.1 The volumetric barrier

Let A ∈ Rm×n where the ith row is ai ∈ Rn, and let b ∈ Rm. We
consider the logarithmic barrier F for the polytope {x ∈ Rn : Ax > b}
defined by

F (x) = −
m∑
i=1

log(a>i x− bi).

We also consider the volumetric barrier v defined by

v(x) = 1
2logdet(∇2F (x)).

The intuition is clear: v(x) is equal to the logarithm of the inverse
volume of the Dikin ellipsoid (for the logarithmic barrier) at x. It will
be useful to spell out the hessian of the logarithmic barrier:

∇2F (x) =
m∑
i=1

aia
>
i

(a>i x− bi)2 .

Introducing the leverage score

σi(x) = (∇2F (x))−1[ai, ai]
(a>i x− bi)2 ,

one can easily verify that

∇v(x) = −
m∑
i=1

σi(x) ai

a>i x− bi
, (2.9)

252 Convex optimization in finite dimension

and
∇2v(x) �

m∑
i=1

σi(x) aia
>
i

(a>i x− bi)2 =: Q(x). (2.10)

2.3.2 Vaidya’s algorithm

We fix ε ≤ 0.006 a small constant to be specified later. Vaidya’s al-
gorithm produces a sequence of pairs (A(t), b(t)) ∈ Rmt×n × Rmt such
that the corresponding polytope contains the convex set of interest.
The initial polytope defined by (A(0), b(0)) is a simplex (in particular
m0 = n+1). For t ≥ 0 we let xt be the minimizer of the volumetric bar-
rier vt of the polytope given by (A(t), b(t)), and (σ(t)

i)i∈[mt] the leverage
scores (associated to vt) at the point xt. We also denote Ft for the log-
arithmic barrier given by (A(t), b(t)). The next polytope (A(t+1), b(t+1))
is defined by either adding or removing a constraint to the current
polytope:

1. If for some i ∈ [mt] one has σ(t)
i = minj∈[mt] σ

(t)
j < ε, then

(A(t+1), b(t+1)) is defined by removing the ith row in (A(t), b(t))
(in particular mt+1 = mt − 1).

2. Otherwise let c(t) be the vector given by the separation oracle
queried at xt, and β(t) ∈ R be chosen so that

(∇2Ft(xt))−1[c(t), c(t)]
(x>t c(t) − β(t))2 = 1

5
√
ε.

Then we define (A(t+1), b(t+1)) by adding to (A(t), b(t)) the row
given by (c(t), β(t)) (in particular mt+1 = mt + 1).

It can be shown that the volumetric barrier is a self-concordant barrier,
and thus it can be efficiently minimized with Newton’s method. In fact
it is enough to do one step of Newton’s method on vt initialized at xt−1,
see Vaidya [1989, 1996] for more details on this.

2.3.3 Analysis of Vaidya’s method

The construction of Vaidya’s method is based on a precise understand-
ing of how the volumetric barrier changes when one adds or removes

2.3. Vaidya’s cutting plane method 253

a constraint to the polytope. This understanding is derived in Section
2.3.4. In particular we obtain the following two key inequalities: If case
1 happens at iteration t then

vt+1(xt+1)− vt(xt) ≥ −ε, (2.11)

while if case 2 happens then

vt+1(xt+1)− vt(xt) ≥
1
20
√
ε. (2.12)

We show now how these inequalities imply that Vaidya’s method stops
after O(n log(nR/r)) steps. First we claim that after 2t iterations, case
2 must have happened at least t − 1 times. Indeed suppose that at
iteration 2t − 1, case 2 has happened t − 2 times; then ∇2F (x) is
singular and the leverage scores are infinite, so case 2 must happen at
iteration 2t. Combining this claim with the two inequalities above we
obtain:

v2t(x2t) ≥ v0(x0) + t− 1
20
√
ε− (t+ 1)ε ≥ t

50ε− 1 + v0(x0).

The key point now is to recall that by definition one has v(x) =
− log vol(E(x, 1)) where E(x, r) = {y : ∇F 2(x)[y−x, y−x] ≤ r2} is the
Dikin ellipsoid centered at x and of radius r. Moreover the logarithmic
barrier F of a polytope with m constraints is m-self-concordant, which
implies that the polytope is included in the Dikin ellipsoid E(z, 2m)
where z is the minimizer of F (see [Theorem 4.2.6., Nesterov [2004a]]).
The volume of E(z, 2m) is equal to (2m)n exp(−v(z)), which is thus
always an upper bound on the volume of the polytope. Combining this
with the above display we just proved that at iteration 2k the volume
of the current polytope is at most

exp
(
n log(2m2t) + 1− v0(x0)− t

50ε
)
.

Since E(x, 1) is always included in the polytope we have that −v0(x0)
is at most the logarithm of the volume of the initial polytope which
is O(n log(R)). This clearly concludes the proof as the procedure will
necessarily stop when the volume is below exp(n log(r)) (we also used
the trivial bound mt ≤ n+ 1 + t).

254 Convex optimization in finite dimension

2.3.4 Constraints and the volumetric barrier

We want to understand the effect on the volumetric barrier of addi-
tion/deletion of constraints to the polytope. Let c ∈ Rn, β ∈ R, and
consider the logarithmic barrier F̃ and the volumetric barrier ṽ corre-
sponding to the matrix Ã ∈ R(m+1)×n and the vector b̃ ∈ Rm+1 which
are respectively the concatenation of A and c, and the concatenation
of b and β. Let x∗ and x̃∗ be the minimizer of respectively v and ṽ. We
recall the definition of leverage scores, for i ∈ [m+ 1], where am+1 = c

and bm+1 = β,

σi(x) = (∇2F (x))−1[ai, ai]
(a>i x− bi)2 , and σ̃i(x) = (∇2F̃ (x))−1[ai, ai]

(a>i x− bi)2 .

The leverage scores σi and σ̃i are closely related:

Lemma 2.5. One has for any i ∈ [m+ 1],

σ̃m+1(x)
1− σ̃m+1(x) ≥ σi(x) ≥ σ̃i(x) ≥ (1− σm+1(x))σi(x).

Proof. First we observe that by Sherman-Morrison’s formula (A +
uv>)−1 = A−1 − A−1uv>A−1

1+A−1[u,v] one has

(∇2F̃ (x))−1 = (∇2F (x))−1 − (∇2F (x))−1cc>(∇2F (x))−1

(c>x− β)2 + (∇2F (x))−1[c, c] , (2.13)

This immediately proves σ̃i(x) ≤ σi(x). It also implies the inequality
σ̃i(x) ≥ (1−σm+1(x))σi(x) thanks the following fact: A− Auu>A

1+A[u,u] � (1−
A[u, u])A. For the last inequality we use that A+ Auu>A

1+A[u,u] �
1

1−A[u,u]A

together with

(∇2F (x))−1 = (∇2F̃ (x))−1 + (∇2F̃ (x))−1cc>(∇2F̃ (x))−1

(c>x− β)2 − (∇2F̃ (x))−1[c, c]
.

We now assume the following key result, which was first proven by
Vaidya. To put the statement in context recall that for a self-concordant
barrier f the suboptimality gap f(x) − min f is intimately related to
the Newton decrement ‖∇f(x)‖(∇2f(x))−1 . Vaidya’s inequality gives a

2.3. Vaidya’s cutting plane method 255

similar claim for the volumetric barrier. We use the version given in
[Theorem 2.6, Anstreicher [1998]] which has slightly better numerical
constants than the original bound. Recall also the definition of Q from
(2.10).

Theorem 2.6. Let λ(x) = ‖∇v(x)‖Q(x)−1 be an approximate Newton
decrement, ε = mini∈[m] σi(x), and assume that λ(x)2 ≤ 2

√
ε−ε

36 . Then

v(x)− v(x∗) ≤ 2λ(x)2.

We also denote λ̃ for the approximate Newton decrement of ṽ. The
goal for the rest of the section is to prove the following theorem which
gives the precise understanding of the volumetric barrier we were look-
ing for.

Theorem 2.7. Let ε := mini∈[m] σi(x∗), δ := σm+1(x∗)/
√
ε and assume

that

(
δ
√
ε+
√
δ3√ε

)2

1−δ
√
ε

< 2
√
ε−ε

36 . Then one has

ṽ(x̃∗)− v(x∗) ≥ 1
2 log(1 + δ

√
ε)− 2

(
δ
√
ε+

√
δ3√ε

)2

1− δ
√
ε

. (2.14)

On the other hand assuming that σ̃m+1(x̃∗) = mini∈[m+1] σ̃i(x̃∗) =: ε
and that ε ≤ 1/4, one has

ṽ(x̃∗)− v(x∗) ≤ −1
2 log(1− ε) + 8ε2

(1− ε)2 . (2.15)

Before going into the proof let us see briefly how Theorem 2.7 give
the two inequalities stated at the beginning of Section 2.3.3. To prove
(2.12) we use (2.14) with δ = 1/5 and ε ≤ 0.006, and we observe that
in this case the right hand side of (2.14) is lower bounded by 1

20
√
ε. On

the other hand to prove (2.11) we use (2.15), and we observe that for
ε ≤ 0.006 the right hand side of (2.15) is upper bounded by ε.

Proof. We start with the proof of (2.14). First observe that by factoring

256 Convex optimization in finite dimension

(∇2F (x))1/2 on the left and on the right of ∇2F̃ (x) one obtains

det(∇2F̃ (x))

= det
(
∇2F (x) + cc>

(c>x− β)2

)

= det(∇2F (x))det
(

In + (∇2F (x))−1/2cc>(∇2F (x))−1/2

(c>x− β)2

)
= det(∇2F (x))(1 + σm+1(x)),

and thus
ṽ(x) = v(x) + 1

2 log(1 + σm+1(x)).

In particular we have

ṽ(x̃∗)− v(x∗) = 1
2 log(1 + σm+1(x∗))− (ṽ(x∗)− ṽ(x̃∗)).

To bound the suboptimality gap of x∗ in ṽ we will invoke Theorem 2.6
and thus we have to upper bound the approximate Newton decrement
λ̃. Using [(2.16), Lemma 2.8] below one has

λ̃(x∗)2 ≤

(
σm+1(x∗) +

√
σ3
m+1(x∗)

mini∈[m] σi(x∗)

)2

1− σm+1(x∗) =

(
δ
√
ε+

√
δ3√ε

)2

1− δ
√
ε

.

This concludes the proof of (2.14).

We now turn to the proof of (2.15). Following the same steps as
above we immediately obtain

ṽ(x̃∗)− v(x∗) = ṽ(x̃∗)− v(x̃∗) + v(x̃∗)− v(x∗)

= −1
2 log(1− σ̃m+1(x̃∗)) + v(x̃∗)− v(x∗).

To invoke Theorem 2.6 it remains to upper bound λ(x̃∗). Using [(2.17),
Lemma 2.8] below one has

λ(x̃∗) ≤ 2 σ̃m+1(x̃∗)
1− σ̃m+1(x̃∗) .

We can apply Theorem 2.6 since the assumption ε ≤ 1/4 implies that(
2ε

1−ε

)2
≤ 2

√
ε−ε

36 . This concludes the proof of (2.15).

2.3. Vaidya’s cutting plane method 257

Lemma 2.8. One has

√
1− σm+1(x) λ̃(x) ≤ ‖∇v(x)‖Q(x)−1 + σm+1(x) +

√√√√ σ3
m+1(x)

mini∈[m] σi(x) .

(2.16)
Furthermore if σ̃m+1(x) = mini∈[m+1] σ̃i(x) then one also has

λ(x) ≤ ‖∇ṽ(x)‖Q(x)−1 + 2 σ̃m+1(x)
1− σ̃m+1(x) . (2.17)

Proof. We start with the proof of (2.16). First observe that by Lemma
2.5 one has Q̃(x) � (1 − σm+1(x))Q(x) and thus by definition of the
Newton decrement

λ̃(x) = ‖∇ṽ(x)‖
Q̃(x)−1 ≤

‖∇ṽ(x)‖Q(x)−1√
1− σm+1(x)

.

Next observe that (recall (2.9))

∇ṽ(x) = ∇v(x) +
m∑
i=1

(σi(x)− σ̃i(x)) ai

a>i x− bi
− σ̃m+1(x) c

c>x− β
.

We now use that Q(x) � (mini∈[m] σi(x))∇2F (x) to obtain∥∥∥∥σ̃m+1(x) c

c>x− β

∥∥∥∥2

Q(x)−1
≤
σ̃2
m+1(x)σm+1(x)
mini∈[m] σi(x) .

By Lemma 2.5 one has σ̃m+1(x) ≤ σm+1(x) and thus we see that it
only remains to prove∥∥∥∥∥

m∑
i=1

(σi(x)− σ̃i(x)) ai

a>i x− bi

∥∥∥∥∥
2

Q(x)−1

≤ σ2
m+1(x).

The above inequality follows from a beautiful calculation of Vaidya (see
[Lemma 12, Vaidya [1996]]), starting from the identity

σi(x)− σ̃i(x) = ((∇2F (x))−1[ai, c])2

((c>x− β)2 + (∇2F (x))−1[c, c])(a>i x− bi)2 ,

which itself follows from (2.13).

258 Convex optimization in finite dimension

We now turn to the proof of (2.17). Following the same steps as
above we immediately obtain

λ(x) = ‖∇v(x)‖Q(x)−1 ≤ ‖∇ṽ(x)‖Q(x)−1+σm+1(x)+

√√√√ σ̃2
m+1(x)σm+1(x)
mini∈[m] σi(x) .

Using Lemma 2.5 together with the assumption σ̃m+1(x) =
mini∈[m+1] σ̃i(x) yields (2.17), thus concluding the proof.

2.4 Conjugate gradient

We conclude this chapter with the special case of unconstrained opti-
mization of a convex quadratic function f(x) = 1

2x
>Ax − b>x, where

A ∈ Rn×n is a positive definite matrix and b ∈ Rn. This problem, of
paramount importance in practice (it is equivalent to solving the lin-
ear system Ax = b), admits a simple first-order black-box procedure
which attains the exact optimum x∗ in at most n steps. This method,
called the conjugate gradient, is described and analyzed below. What
is written below is taken from [Chapter 5, Nocedal and Wright [2006]].

Let 〈·, ·〉A be the inner product on Rn defined by the positive def-
inite matrix A, that is 〈x, y〉A = x>Ay (we also denote by ‖ · ‖A the
corresponding norm). For sake of clarity we denote here 〈·, ·〉 for the
standard inner product in Rn. Given an orthogonal set {p0, . . . , pn−1}
for 〈·, ·〉A we will minimize f by sequentially minimizing it along the
directions given by this orthogonal set. That is, given x0 ∈ Rn, for t ≥ 0
let

xt+1 := argmin
x∈{xt+λpt, λ∈R}

f(x). (2.18)

Equivalently one can write

xt+1 = xt − 〈∇f(xt), pt〉
pt
‖pt‖2A

. (2.19)

The latter identity follows by differentiating λ 7→ f(x+λpt), and using
that ∇f(x) = Ax− b. We also make an observation that will be useful
later, namely that xt+1 is the minimizer of f on x0 + span{p0, . . . , pt},
or equivalently

〈∇f(xt+1), pi〉 = 0,∀ 0 ≤ i ≤ t. (2.20)

2.4. Conjugate gradient 259

Equation (2.20) is true by construction for i = t, and for i ≤ t − 1 it
follows by induction, assuming (2.20) at t = 1 and using the following
formula:

∇f(xt+1) = ∇f(xt)− 〈∇f(xt), pt〉
Apt
‖pt‖2A

. (2.21)

We now claim that xn = x∗ = argminx∈Rn f(x). It suffices to show
that 〈xn−x0, pt〉A = 〈x∗−x0, pt〉A for any t ∈ {0, . . . , n−1}. Note that
xn − x0 = −

∑n−1
t=0 〈∇f(xt), pt〉 pt

‖pt‖2
A
, and thus using that x∗ = A−1b,

〈xn − x0, pt〉A = −〈∇f(xt), pt〉 = 〈b−Axt, pt〉 = 〈x∗ − xt, pt〉A
= 〈x∗ − x0, pt〉A,

which concludes the proof of xn = x∗.

In order to have a proper black-box method it remains to describe
how to build iteratively the orthogonal set {p0, . . . , pn−1} based only on
gradient evaluations of f . A natural guess to obtain a set of orthogonal
directions (w.r.t. 〈·, ·〉A) is to take p0 = ∇f(x0) and for t ≥ 1,

pt = ∇f(xt)− 〈∇f(xt), pt−1〉A
pt−1
‖pt−1‖2A

. (2.22)

Let us first verify by induction on t ∈ [n−1] that for any i ∈ {0, . . . , t−
2}, 〈pt, pi〉A = 0 (observe that for i = t−1 this is true by construction of
pt). Using the induction hypothesis one can see that it is enough to show
〈∇f(xt), pi〉A = 0 for any i ∈ {0, . . . , t− 2}, which we prove now. First
observe that by induction one easily obtains Api ∈ span{p0, . . . , pi+1}
from (2.21) and (2.22). Using this fact together with 〈∇f(xt), pi〉A =
〈∇f(xt), Api〉 and (2.20) thus concludes the proof of orthogonality of
the set {p0, . . . , pn−1}.

We still have to show that (2.22) can be written by making
only reference to the gradients of f at previous points. Recall that
xt+1 is the minimizer of f on x0 + span{p0, . . . , pt}, and thus given
the form of pt we also have that xt+1 is the minimizer of f on
x0 + span{∇f(x0), . . . ,∇f(xt)} (in some sense the conjugate gradi-
ent is the optimal first order method for convex quadratic functions).
In particular one has 〈∇f(xt+1),∇f(xt)〉 = 0. This fact, together with

260 Convex optimization in finite dimension

the orthogonality of the set {pt} and (2.21), imply that

〈∇f(xt+1), pt〉A
‖pt‖2A

= 〈∇f(xt+1), Apt
‖pt‖2A

〉 = −〈∇f(xt+1),∇f(xt+1)〉
〈∇f(xt), pt〉

.

Furthermore using the definition (2.22) and 〈∇f(xt), pt−1〉 = 0 one also
has

〈∇f(xt), pt〉 = 〈∇f(xt),∇f(xt)〉.

Thus we arrive at the following rewriting of the (linear) conjugate gra-
dient algorithm, where we recall that x0 is some fixed starting point
and p0 = ∇f(x0),

xt+1 = argmin
x∈{xt+λpt, λ∈R}

f(x), (2.23)

pt+1 = ∇f(xt+1) + 〈∇f(xt+1),∇f(xt+1)〉
〈∇f(xt),∇f(xt)〉

pt. (2.24)

Observe that the algorithm defined by (2.23) and (2.24) makes sense
for an arbitary convex function, in which case it is called the non-
linear conjugate gradient. There are many variants of the non-linear
conjugate gradient, and the above form is known as the Fletcher-
âĂŞReeves method. Another popular version in practice is the Polak-
Ribière method which is based on the fact that for the general non-
quadratic case one does not necessarily have 〈∇f(xt+1),∇f(xt)〉 = 0,
and thus one replaces (2.24) by

pt+1 = ∇f(xt+1) + 〈∇f(xt+1)−∇f(xt),∇f(xt+1)〉
〈∇f(xt),∇f(xt)〉

pt.

We refer to Nocedal and Wright [2006] for more details about these
algorithms, as well as for advices on how to deal with the line search
in (2.23).

Finally we also note that the linear conjugate gradient method can
often attain an approximate solution in much fewer than n steps. More
precisely, denoting κ for the condition number of A (that is the ratio
of the largest eigenvalue to the smallest eigenvalue of A), one can show
that linear conjugate gradient attains an ε optimal point in a number
of iterations of order

√
κ log(1/ε). The next chapter will demistify this

2.4. Conjugate gradient 261

convergence rate, and in particular we will see that (i) this is the opti-
mal rate among first order methods, and (ii) there is a way to generalize
this rate to non-quadratic convex functions (though the algorithm will
have to be modified).

3

Dimension-free convex optimization

We investigate here variants of the gradient descent scheme. This it-
erative algorithm, which can be traced back to Cauchy [1847], is the
simplest strategy to minimize a differentiable function f on Rn. Start-
ing at some initial point x1 ∈ Rn it iterates the following equation:

xt+1 = xt − η∇f(xt), (3.1)

where η > 0 is a fixed step-size parameter. The rationale behind (3.1)
is to make a small step in the direction that minimizes the local first
order Taylor approximation of f (also known as the steepest descent
direction).

As we shall see, methods of the type (3.1) can obtain an oracle
complexity independent of the dimension1. This feature makes them
particularly attractive for optimization in very high dimension.

Apart from Section 3.3, in this chapter ‖ · ‖ denotes the Euclidean
norm. The set of constraints X ⊂ Rn is assumed to be compact and

1Of course the computational complexity remains at least linear in the dimension
since one needs to manipulate gradients.

262

3.1. Projected subgradient descent for Lipschitz functions 263

x

y

‖y − x‖

ΠX (y)

‖y −ΠX (y)‖

‖ΠX (y)− x‖

X

Figure 3.1: Illustration of Lemma 3.1.

convex. We define the projection operator ΠX on X by

ΠX (x) = argmin
y∈X

‖x− y‖.

The following lemma will prove to be useful in our study. It is an easy
corollary of Proposition 1.3, see also Figure 3.1.

Lemma 3.1. Let x ∈ X and y ∈ Rn, then

(ΠX (y)− x)>(ΠX (y)− y) ≤ 0,

which also implies ‖ΠX (y)− x‖2 + ‖y −ΠX (y)‖2 ≤ ‖y − x‖2.

Unless specified otherwise all the proofs in this chapter are taken
from Nesterov [2004a] (with slight simplification in some cases).

3.1 Projected subgradient descent for Lipschitz functions

In this section we assume that X is contained in an Euclidean ball
centered at x1 ∈ X and of radius R. Furthermore we assume that f is
such that for any x ∈ X and any g ∈ ∂f(x) (we assume ∂f(x) 6= ∅),

264 Dimension-free convex optimization

xt

yt+1

gradient step
(3.2)

xt+1

projection (3.3)

X

Figure 3.2: Illustration of the projected subgradient descent method.

one has ‖g‖ ≤ L. Note that by the subgradient inequality and Cauchy-
Schwarz this implies that f is L-Lipschitz on X , that is |f(x)−f(y)| ≤
L‖x− y‖.

In this context we make two modifications to the basic gradient
descent (3.1). First, obviously, we replace the gradient ∇f(x) (which
may not exist) by a subgradient g ∈ ∂f(x). Secondly, and more impor-
tantly, we make sure that the updated point lies in X by projecting
back (if necessary) onto it. This gives the projected subgradient descent
algorithm2 which iterates the following equations for t ≥ 1:

yt+1 = xt − ηgt, where gt ∈ ∂f(xt), (3.2)
xt+1 = ΠX (yt+1). (3.3)

This procedure is illustrated in Figure 3.2. We prove now a rate of
convergence for this method under the above assumptions.

Theorem 3.2. The projected subgradient descent method with η =

2In the optimization literature the term “descent" is reserved for methods such
that f(xt+1) ≤ f(xt). In that sense the projected subgradient descent is not a
descent method.

3.1. Projected subgradient descent for Lipschitz functions 265

R
L
√
t
satisfies

f

(
1
t

t∑
s=1

xs

)
− f(x∗) ≤ RL√

t
.

Proof. Using the definition of subgradients, the definition of the
method, and the elementary identity 2a>b = ‖a‖2 + ‖b‖2 − ‖a − b‖2,
one obtains

f(xs)− f(x∗) ≤ g>s (xs − x∗)

= 1
η

(xs − ys+1)>(xs − x∗)

= 1
2η
(
‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2

)
= 1

2η
(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+ η

2‖gs‖
2.

Now note that ‖gs‖ ≤ L, and furthermore by Lemma 3.1

‖ys+1 − x∗‖ ≥ ‖xs+1 − x∗‖.

Summing the resulting inequality over s, and using that ‖x1−x∗‖ ≤ R
yield

t∑
s=1

(f(xs)− f(x∗)) ≤ R2

2η + ηL2t

2 .

Plugging in the value of η directly gives the statement (recall that by
convexity f((1/t)

∑t
s=1 xs) ≤ 1

t

∑t
s=1 f(xs)).

We will show in Section 3.5 that the rate given in Theorem 3.2
is unimprovable from a black-box perspective. Thus to reach an ε-
optimal point one needs Θ(1/ε2) calls to the oracle. In some sense
this is an astonishing result as this complexity is independent3 of the
ambient dimension n. On the other hand this is also quite disappointing
compared to the scaling in log(1/ε) of the center of gravity and ellipsoid
method of Chapter 2. To put it differently with gradient descent one
could hope to reach a reasonable accuracy in very high dimension,
while with the ellipsoid method one can reach very high accuracy in

3Observe however that the quantities R and L may dependent on the dimension,
see Chapter 4 for more on this.

266 Dimension-free convex optimization

reasonably small dimension. A major task in the following sections
will be to explore more restrictive assumptions on the function to be
optimized in order to have the best of both worlds, that is an oracle
complexity independent of the dimension and with a scaling in log(1/ε).

The computational bottleneck of the projected subgradient descent
is often the projection step (3.3) which is a convex optimization problem
by itself. In some cases this problem may admit an analytical solution
(think of X being an Euclidean ball), or an easy and fast combinatorial
algorithm to solve it (this is the case for X being an `1-ball, see Mac-
ulan and de Paula [1989]). We will see in Section 3.3 a projection-free
algorithm which operates under an extra assumption of smoothness on
the function to be optimized.

Finally we observe that the step-size recommended by Theorem 3.2
depends on the number of iterations to be performed. In practice this
may be an undesirable feature. However using a time-varying step size
of the form ηs = R

L
√
s
one can prove the same rate up to a log t factor.

In any case these step sizes are very small, which is the reason for
the slow convergence. In the next section we will see that by assuming
smoothness in the function f one can afford to be much more aggressive.
Indeed in this case, as one approaches the optimum the size of the
gradients themselves will go to 0, resulting in a sort of “auto-tuning" of
the step sizes which does not happen for an arbitrary convex function.

3.2 Gradient descent for smooth functions

We say that a continuously differentiable function f is β-smooth if the
gradient ∇f is β-Lipschitz, that is

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Note that if f is twice differentiable then this is equivalent to the eigen-
values of the Hessians being smaller than β. In this section we explore
potential improvements in the rate of convergence under such a smooth-
ness assumption. In order to avoid technicalities we consider first the
unconstrained situation, where f is a convex and β-smooth function
on Rn. The next theorem shows that gradient descent, which iterates

3.2. Gradient descent for smooth functions 267

xt+1 = xt − η∇f(xt), attains a much faster rate in this situation than
in the non-smooth case of the previous section.

Theorem 3.3. Let f be convex and β-smooth on Rn. Then gradient
descent with η = 1

β satisfies

f(xt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t− 1 .

Before embarking on the proof we state a few properties of smooth
convex functions.

Lemma 3.4. Let f be a β-smooth function on Rn. Then for any x, y ∈
Rn, one has

|f(x)− f(y)−∇f(y)>(x− y)| ≤ β

2 ‖x− y‖
2.

Proof. We represent f(x)− f(y) as an integral, apply Cauchy-Schwarz
and then β-smoothness:

|f(x)− f(y)−∇f(y)>(x− y)|

=
∣∣∣∣∫ 1

0
∇f(y + t(x− y))>(x− y)dt−∇f(y)>(x− y)

∣∣∣∣
≤
∫ 1

0
‖∇f(y + t(x− y))−∇f(y)‖ · ‖x− y‖dt

≤
∫ 1

0
βt‖x− y‖2dt

= β

2 ‖x− y‖
2.

In particular this lemma shows that if f is convex and β-smooth,
then for any x, y ∈ Rn, one has

0 ≤ f(x)− f(y)−∇f(y)>(x− y) ≤ β

2 ‖x− y‖
2. (3.4)

This gives in particular the following important inequality to evaluate
the improvement in one step of gradient descent:

f

(
x− 1

β
∇f(x)

)
− f(x) ≤ − 1

2β ‖∇f(x)‖2. (3.5)

268 Dimension-free convex optimization

The next lemma, which improves the basic inequality for subgradients
under the smoothness assumption, shows that in fact f is convex and
β-smooth if and only if (3.4) holds true. In the literature (3.4) is often
used as a definition of smooth convex functions.

Lemma 3.5. Let f be such that (3.4) holds true. Then for any x, y ∈
Rn, one has

f(x)− f(y) ≤ ∇f(x)>(x− y)− 1
2β ‖∇f(x)−∇f(y)‖2.

Proof. Let z = y − 1
β (∇f(y)−∇f(x)). Then one has

f(x)− f(y)
= f(x)− f(z) + f(z)− f(y)

≤ ∇f(x)>(x− z) +∇f(y)>(z − y) + β

2 ‖z − y‖
2

= ∇f(x)>(x− y) + (∇f(x)−∇f(y))>(y − z) + 1
2β ‖∇f(x)−∇f(y)‖2

= ∇f(x)>(x− y)− 1
2β ‖∇f(x)−∇f(y)‖2.

We can now prove Theorem 3.3

Proof. Using (3.5) and the definition of the method one has

f(xs+1)− f(xs) ≤ −
1

2β ‖∇f(xs)‖2.

In particular, denoting δs = f(xs)− f(x∗), this shows:

δs+1 ≤ δs −
1

2β ‖∇f(xs)‖2.

One also has by convexity

δs ≤ ∇f(xs)>(xs − x∗) ≤ ‖xs − x∗‖ · ‖∇f(xs)‖.

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two
above displays will imply

δs+1 ≤ δs −
1

2β‖x1 − x∗‖2
δ2
s .

3.2. Gradient descent for smooth functions 269

Let us see how to use this last inequality to conclude the proof. Let
ω = 1

2β‖x1−x∗‖2 , then4

ωδ2
s+δs+1 ≤ δs ⇔ ω

δs
δs+1

+ 1
δs
≤ 1
δs+1

⇒ 1
δs+1
− 1
δs
≥ ω ⇒ 1

δt
≥ ω(t−1).

Thus it only remains to show that ‖xs−x∗‖ is decreasing with s. Using
Lemma 3.5 one immediately gets

(∇f(x)−∇f(y))>(x− y) ≥ 1
β
‖∇f(x)−∇f(y)‖2. (3.6)

We use this as follows (together with ∇f(x∗) = 0)

‖xs+1 − x∗‖2 = ‖xs −
1
β
∇f(xs)− x∗‖2

= ‖xs − x∗‖2 −
2
β
∇f(xs)>(xs − x∗) + 1

β2 ‖∇f(xs)‖2

≤ ‖xs − x∗‖2 −
1
β2 ‖∇f(xs)‖2

≤ ‖xs − x∗‖2,

which concludes the proof.

The constrained case

We now come back to the constrained problem

min. f(x)
s.t. x ∈ X .

Similarly to what we did in Section 3.1 we consider the projected gra-
dient descent algorithm, which iterates xt+1 = ΠX (xt − η∇f(xt)).

The key point in the analysis of gradient descent for unconstrained
smooth optimization is that a step of gradient descent started at x will
decrease the function value by at least 1

2β‖∇f(x)‖2, see (3.5). In the
constrained case we cannot expect that this would still hold true as a
step may be cut short by the projection. The next lemma defines the
“right" quantity to measure progress in the constrained case.

4The last step in the sequence of implications can be improved by taking δ1 into
account. Indeed one can easily show with (3.4) that δ1 ≤ 1

4ω . This improves the rate
of Theorem 3.3 from 2β‖x1−x∗‖2

t−1 to 2β‖x1−x∗‖2

t+3 .

270 Dimension-free convex optimization

Lemma 3.6. Let x, y ∈ X , x+ = ΠX
(
x− 1

β∇f(x)
)
, and gX (x) =

β(x− x+). Then the following holds true:

f(x+)− f(y) ≤ gX (x)>(x− y)− 1
2β ‖gX (x)‖2.

Proof. We first observe that

∇f(x)>(x+ − y) ≤ gX (x)>(x+ − y). (3.7)

Indeed the above inequality is equivalent to(
x+ −

(
x− 1

β
∇f(x)

))>
(x+ − y) ≤ 0,

which follows from Lemma 3.1. Now we use (3.7) as follows to prove
the lemma (we also use (3.4) which still holds true in the constrained
case)

f(x+)− f(y)
= f(x+)− f(x) + f(x)− f(y)

≤ ∇f(x)>(x+ − x) + β

2 ‖x
+ − x‖2 +∇f(x)>(x− y)

= ∇f(x)>(x+ − y) + 1
2β ‖gX (x)‖2

≤ gX (x)>(x+ − y) + 1
2β ‖gX (x)‖2

= gX (x)>(x− y)− 1
2β ‖gX (x)‖2.

We can now prove the following result.

Theorem 3.7. Let f be convex and β-smooth on X . Then projected
gradient descent with η = 1

β satisfies

f(xt)− f(x∗) ≤ 3β‖x1 − x∗‖2 + f(x1)− f(x∗)
t

.

Proof. Lemma 3.6 immediately gives

f(xs+1)− f(xs) ≤ −
1

2β ‖gX (xs)‖2,

3.3. Conditional gradient descent, aka Frank-Wolfe 271

and
f(xs+1)− f(x∗) ≤ ‖gX (xs)‖ · ‖xs − x∗‖.

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two
above displays will imply

δs+1 ≤ δs −
1

2β‖x1 − x∗‖2
δ2
s+1.

An easy induction shows that

δs ≤
3β‖x1 − x∗‖2 + f(x1)− f(x∗)

s
.

Thus it only remains to show that ‖xs−x∗‖ is decreasing with s. Using
Lemma 3.6 one can see that gX (xs)>(xs − x∗) ≥ 1

2β‖gX (xs)‖2 which
implies

‖xs+1 − x∗‖2 = ‖xs −
1
β
gX (xs)− x∗‖2

= ‖xs − x∗‖2 −
2
β
gX (xs)>(xs − x∗) + 1

β2 ‖gX (xs)‖2

≤ ‖xs − x∗‖2.

3.3 Conditional gradient descent, aka Frank-Wolfe

We describe now an alternative algorithm to minimize a smooth con-
vex function f over a compact convex set X . The conditional gradient
descent, introduced in Frank and Wolfe [1956], performs the following
update for t ≥ 1, where (γs)s≥1 is a fixed sequence,

yt ∈ argminy∈X∇f(xt)>y (3.8)
xt+1 = (1− γt)xt + γtyt. (3.9)

In words conditional gradient descent makes a step in the steepest
descent direction given the constraint set X , see Figure 3.3 for an il-
lustration. From a computational perspective, a key property of this

272 Dimension-free convex optimization

xt

yt

−∇f(xt)
xt+1

X

Figure 3.3: Illustration of conditional gradient descent.

scheme is that it replaces the projection step of projected gradient de-
scent by a linear optimization over X , which in some cases can be a
much simpler problem.

We now turn to the analysis of this method. A major advantage of
conditional gradient descent over projected gradient descent is that the
former can adapt to smoothness in an arbitrary norm. Precisely let f
be β-smooth in some norm ‖ · ‖, that is ‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖
where the dual norm ‖ · ‖∗ is defined as ‖g‖∗ = supx∈Rn:‖x‖≤1 g

>x.
The following result is extracted from Jaggi [2013] (see also Dunn and
Harshbarger [1978]).

Theorem 3.8. Let f be a convex and β-smooth function w.r.t. some
norm ‖ · ‖, R = supx,y∈X ‖x− y‖, and γs = 2

s+1 for s ≥ 1. Then for any
t ≥ 2, one has

f(xt)− f(x∗) ≤ 2βR2

t+ 1 .

Proof. The following inequalities hold true, using respectively β-
smoothness (it can easily be seen that (3.4) holds true for smoothness
in an arbitrary norm), the definition of xs+1, the definition of ys, and

3.3. Conditional gradient descent, aka Frank-Wolfe 273

the convexity of f :

f(xs+1)− f(xs) ≤ ∇f(xs)>(xs+1 − xs) + β

2 ‖xs+1 − xs‖2

≤ γs∇f(xs)>(ys − xs) + β

2 γ
2
sR

2

≤ γs∇f(xs)>(x∗ − xs) + β

2 γ
2
sR

2

≤ γs(f(x∗)− f(xs)) + β

2 γ
2
sR

2.

Rewriting this inequality in terms of δs = f(xs)− f(x∗) one obtains

δs+1 ≤ (1− γs)δs + β

2 γ
2
sR

2.

A simple induction using that γs = 2
s+1 finishes the proof (note that

the initialization is done at step 2 with the above inequality yielding
δ2 ≤ β

2R
2).

In addition to being projection-free and “norm-free", the conditional
gradient descent satisfies a perhaps even more important property: it
produces sparse iterates. More precisely consider the situation where
X ⊂ Rn is a polytope, that is the convex hull of a finite set of points
(these points are called the vertices of X). Then Carathéodory’s theo-
rem states that any point x ∈ X can be written as a convex combination
of at most n+ 1 vertices of X . On the other hand, by definition of the
conditional gradient descent, one knows that the tth iterate xt can be
written as a convex combination of t vertices (assuming that x1 is a
vertex). Thanks to the dimension-free rate of convergence one is usu-
ally interested in the regime where t � n, and thus we see that the
iterates of conditional gradient descent are very sparse in their vertex
representation.

We note an interesting corollary of the sparsity property together
with the rate of convergence we proved: smooth functions on the sim-
plex {x ∈ Rn+ :

∑n
i=1 xi = 1} always admit sparse approximate mini-

mizers. More precisely there must exist a point x with only t non-zero
coordinates and such that f(x) − f(x∗) = O(1/t). Clearly this is the
best one can hope for in general, as it can be seen with the function

274 Dimension-free convex optimization

f(x) = ‖x‖22 since by Cauchy-Schwarz one has ‖x‖1 ≤
√
‖x‖0‖x‖2

which implies on the simplex ‖x‖22 ≥ 1/‖x‖0.
Next we describe an application where the three properties of condi-

tional gradient descent (projection-free, norm-free, and sparse iterates)
are critical to develop a computationally efficient procedure.

An application of conditional gradient descent: Least-squares re-
gression with structured sparsity

This example is inspired by Lugosi [2010] (see also Jones [1992]). Con-
sider the problem of approximating a signal Y ∈ Rn by a “small" com-
bination of dictionary elements d1, . . . , dN ∈ Rn. One way to do this
is to consider a LASSO type problem in dimension N of the following
form (with λ ∈ R fixed)

min
x∈RN

∥∥Y − N∑
i=1

x(i)di
∥∥2

2 + λ‖x‖1.

Let D ∈ Rn×N be the dictionary matrix with ith column given by di.
Instead of considering the penalized version of the problem one could
look at the following constrained problem (with s ∈ R fixed) on which
we will now focus, see e.g. Friedlander and Tseng [2007],

min
x∈RN

‖Y −Dx‖22 ⇔ min
x∈RN

‖Y/s−Dx‖22 (3.10)

subject to ‖x‖1 ≤ s subject to ‖x‖1 ≤ 1.

We make some assumptions on the dictionary. We are interested in
situations where the size of the dictionary N can be very large, poten-
tially exponential in the ambient dimension n. Nonetheless we want to
restrict our attention to algorithms that run in reasonable time with
respect to the ambient dimension n, that is we want polynomial time
algorithms in n. Of course in general this is impossible, and we need to
assume that the dictionary has some structure that can be exploited.
Here we make the assumption that one can do linear optimization over
the dictionary in polynomial time in n. More precisely we assume that
one can solve in time p(n) (where p is polynomial) the following prob-
lem for any y ∈ Rn:

min
1≤i≤N

y>di.

3.3. Conditional gradient descent, aka Frank-Wolfe 275

This assumption is met for many combinatorial dictionaries. For in-
stance the dicÂŋtioÂŋnary eleÂŋments could be vecÂŋtor of inciÂŋ-
dence of spanÂŋning trees in some fixed graph, in which case the
linÂŋear optiÂŋmizaÂŋtion probÂŋlem can be solved with a greedy
algorithm.

Finally, for normalization issues, we assume that the `2-norm of
the dictionary elements are controlled by some m > 0, that is ‖di‖2 ≤
m,∀i ∈ [N].

Our problem of interest (3.10) corresponds to minimizing the func-
tion f(x) = 1

2‖Y − Dx‖
2
2 on the `1-ball of RN in polynomial time in

n. At first sight this task may seem completely impossible, indeed one
is not even allowed to write down entirely a vector x ∈ RN (since this
would take time linear in N). The key property that will save us is that
this function admits sparse minimizers as we discussed in the previous
section, and this will be exploited by the conditional gradient descent
method.

First let us study the computational complexity of the tth step of
conditional gradient descent. Observe that

∇f(x) = D>(Dx− Y).

Now assume that zt = Dxt − Y ∈ Rn is already computed, then to
compute (3.8) one needs to find the coordinate it ∈ [N] that maximizes
|[∇f(xt)](i)| which can be done by maximizing d>i zt and −d>i zt. Thus
(3.8) takes time O(p(n)). Computing xt+1 from xt and it takes time
O(t) since ‖xt‖0 ≤ t, and computing zt+1 from zt and it takes time
O(n). Thus the overall time complexity of running t steps is (we assume
p(n) = Ω(n))

O(tp(n) + t2). (3.11)
To derive a rate of convergence it remains to study the smoothness

of f . This can be done as follows:

‖∇f(x)−∇f(y)‖∞ = ‖D>D(x− y)‖∞

= max
1≤i≤N

∣∣∣∣d>i
 N∑
j=1

dj(x(j)− y(j))

 ∣∣∣∣
≤ m2‖x− y‖1,

276 Dimension-free convex optimization

which means that f is m2-smooth with respect to the `1-norm. Thus
we get the following rate of convergence:

f(xt)− f(x∗) ≤ 8m2

t+ 1 . (3.12)

Putting together (3.11) and (3.12) we proved that one can get an ε-
optimal solution to (3.10) with a computational effort of O(m2p(n)/ε+
m4/ε2) using the conditional gradient descent.

3.4 Strong convexity

We will now discuss another property of convex functions that can
significantly speed-up the convergence of first order methods: strong
convexity. We say that f : X → R is α-strongly convex if it satisfies the
following improved subgradient inequality:

f(x)− f(y) ≤ ∇f(x)>(x− y)− α

2 ‖x− y‖
2. (3.13)

Of course this definition does not require differentiability of the function
f , and one can replace ∇f(x) in the inequality above by g ∈ ∂f(x). It
is immediate to verify that a function f is α-strongly convex if and only
if x 7→ f(x)− α

2 ‖x‖
2 is convex (in particular if f is twice differentiable

then the eigenvalues of the Hessians of f have to be larger than α).
The strong convexity parameter α is a measure of the curvature of
f . For instance a linear function has no curvature and hence α = 0.
On the other hand one can clearly see why a large value of α would
lead to a faster rate: in this case a point far from the optimum will
have a large gradient, and thus gradient descent will make very big
steps when far from the optimum. Of course if the function is non-
smooth one still has to be careful and tune the step-sizes to be relatively
small, but nonetheless we will be able to improve the oracle complexity
from O(1/ε2) to O(1/(αε)). On the other hand with the additional
assumption of β-smoothness we will prove that gradient descent with
a constant step-size achieves a linear rate of convergence, precisely the
oracle complexity will be O(βα log(1/ε)). This achieves the objective we
had set after Theorem 3.2: strongly-convex and smooth functions can
be optimized in very large dimension and up to very high accuracy.

3.4. Strong convexity 277

Before going into the proofs let us discuss another interpretation of
strong-convexity and its relation to smoothness. Equation (3.13) can
be read as follows: at any point x one can find a (convex) quadratic
lower bound q−x (y) = f(x)+∇f(x)>(y−x)+ α

2 ‖x−y‖
2 to the function

f , i.e. q−x (y) ≤ f(y),∀y ∈ X (and q−x (x) = f(x)). On the other hand for
β-smoothness (3.4) implies that at any point y one can find a (convex)
quadratic upper bound q+

y (x) = f(y) +∇f(y)>(x− y) + β
2 ‖x− y‖

2 to
the function f , i.e. q+

y (x) ≥ f(x),∀x ∈ X (and q+
y (y) = f(y)). Thus in

some sense strong convexity is a dual assumption to smoothness, and in
fact this can be made precise within the framework of Fenchel duality.
Also remark that clearly one always has β ≥ α.

3.4.1 Strongly convex and Lipschitz functions

We consider here the projected subgradient descent algorithm with
time-varying step size (ηt)t≥1, that is

yt+1 = xt − ηtgt, where gt ∈ ∂f(xt)
xt+1 = ΠX (yt+1).

The following result is extracted from Lacoste-Julien et al. [2012].

Theorem 3.9. Let f be α-strongly convex and L-Lipschitz on X . Then
projected subgradient descent with ηs = 2

α(s+1) satisfies

f

(
t∑

s=1

2s
t(t+ 1)xs

)
− f(x∗) ≤ 2L2

α(t+ 1) .

Proof. Coming back to our original analysis of projected subgradient
descent in Section 3.1 and using the strong convexity assumption one
immediately obtains

f(xs)− f(x∗) ≤ ηs
2 L

2 +
(1

2ηs
− α

2

)
‖xs − x∗‖2 −

1
2ηs
‖xs+1 − x∗‖2.

Multiplying this inequality by s yields

s(f(xs)−f(x∗)) ≤ L2

α
+ α

4

(
s(s−1)‖xs−x∗‖2−s(s+1)‖xs+1−x∗‖2

)
,

Now sum the resulting inequality over s = 1 to s = t, and apply
Jensen’s inequality to obtain the claimed statement.

278 Dimension-free convex optimization

3.4.2 Strongly convex and smooth functions

As we will see now, having both strong convexity and smoothness allows
for a drastic improvement in the convergence rate. We denote κ = β

α

for the condition number of f . The key observation is that Lemma 3.6
can be improved to (with the notation of the lemma):

f(x+)− f(y) ≤ gX (x)>(x− y)− 1
2β ‖gX (x)‖2 − α

2 ‖x− y‖
2. (3.14)

Theorem 3.10. Let f be α-strongly convex and β-smooth on X . Then
projected gradient descent with η = 1

β satisfies for t ≥ 0,

‖xt+1 − x∗‖2 ≤ exp
(
− t
κ

)
‖x1 − x∗‖2.

Proof. Using (3.14) with y = x∗ one directly obtains

‖xt+1 − x∗‖2 = ‖xt −
1
β
gX (xt)− x∗‖2

= ‖xt − x∗‖2 −
2
β
gX (xt)>(xt − x∗) + 1

β2 ‖gX (xt)‖2

≤
(

1− α

β

)
‖xt − x∗‖2

≤
(

1− α

β

)t
‖x1 − x∗‖2

≤ exp
(
− t
κ

)
‖x1 − x∗‖2,

which concludes the proof.

We now show that in the unconstrained case one can improve the
rate by a constant factor, precisely one can replace κ by (κ + 1)/4 in
the oracle complexity bound by using a larger step size. This is not a
spectacular gain but the reasoning is based on an improvement of (3.6)
which can be of interest by itself. Note that (3.6) and the lemma to
follow are sometimes referred to as coercivity of the gradient.

Lemma 3.11. Let f be β-smooth and α-strongly convex on Rn. Then
for all x, y ∈ Rn, one has

(∇f(x)−∇f(y))>(x−y) ≥ αβ

β + α
‖x−y‖2 + 1

β + α
‖∇f(x)−∇f(y)‖2.

3.5. Lower bounds 279

Proof. Let ϕ(x) = f(x) − α
2 ‖x‖

2. By definition of α-strong convexity
one has that ϕ is convex. Furthermore one can show that ϕ is (β−α)-
smooth by proving (3.4) (and using that it implies smoothness). Thus
using (3.6) one gets

(∇ϕ(x)−∇ϕ(y))>(x− y) ≥ 1
β − α

‖∇ϕ(x)−∇ϕ(y)‖2,

which gives the claimed result with straightforward computations.
(Note that if α = β the smoothness of ϕ directly implies that
∇f(x)−∇f(y) = α(x− y) which proves the lemma in this case.)

Theorem 3.12. Let f be β-smooth and α-strongly convex on Rn. Then
gradient descent with η = 2

α+β satisfies

f(xt+1)− f(x∗) ≤ β

2 exp
(
− 4t
κ+ 1

)
‖x1 − x∗‖2.

Proof. First note that by β-smoothness (since ∇f(x∗) = 0) one has

f(xt)− f(x∗) ≤ β

2 ‖xt − x
∗‖2.

Now using Lemma 3.11 one obtains

‖xt+1 − x∗‖2 = ‖xt − η∇f(xt)− x∗‖2

= ‖xt − x∗‖2 − 2η∇f(xt)>(xt − x∗) + η2‖∇f(xt)‖2

≤
(

1− 2 ηαβ

β + α

)
‖xt − x∗‖2 +

(
η2 − 2 η

β + α

)
‖∇f(xt)‖2

=
(
κ− 1
κ+ 1

)2
‖xt − x∗‖2

≤ exp
(
− 4t
κ+ 1

)
‖x1 − x∗‖2,

which concludes the proof.

3.5 Lower bounds

We prove here various oracle complexity lower bounds. These results
first appeared in Nemirovski and Yudin [1983] but we follow here the

280 Dimension-free convex optimization

simplified presentation of Nesterov [2004a]. In general a black-box pro-
cedure is a mapping from “history" to the next query point, that is it
maps (x1, g1, . . . , xt, gt) (with gs ∈ ∂f(xs)) to xt+1. In order to simplify
the notation and the argument, throughout the section we make the
following assumption on the black-box procedure: x1 = 0 and for any
t ≥ 0, xt+1 is in the linear span of g1, . . . , gt, that is

xt+1 ∈ Span(g1, . . . , gt). (3.15)

Let e1, . . . , en be the canonical basis of Rn, and B2(R) = {x ∈ Rn :
‖x‖ ≤ R}. We start with a theorem for the two non-smooth cases
(convex and strongly convex).

Theorem 3.13. Let t ≤ n, L,R > 0. There exists a convex and L-
Lipschitz function f such that for any black-box procedure satisfying
(3.15),

min
1≤s≤t

f(xs)− min
x∈B2(R)

f(x) ≥ RL

2(1 +
√
t)
.

There also exists an α-strongly convex and L-lipschitz function f such
that for any black-box procedure satisfying (3.15),

min
1≤s≤t

f(xs)− min
x∈B2(L

2α)
f(x) ≥ L2

8αt.

Note that the above result is restricted to a number of iterations
smaller than the dimension, that is t ≤ n. This restriction is of course
necessary to obtain lower bounds polynomial in 1/t: as we saw in Chap-
ter 2 one can always obtain an exponential rate of convergence when
the number of calls to the oracle is larger than the dimension.

Proof. We consider the following α-strongly convex function:

f(x) = γ max
1≤i≤t

x(i) + α

2 ‖x‖
2.

It is easy to see that

∂f(x) = αx+ γconv
(
ei, i : x(i) = max

1≤j≤t
x(j)

)
.

In particular if ‖x‖ ≤ R then for any g ∈ ∂f(x) one has ‖g‖ ≤ αR+ γ.
In other words f is (αR+ γ)-Lipschitz on B2(R).

3.5. Lower bounds 281

Next we describe the first order oracle for this function: when asked
for a subgradient at x, it returns αx+γei where i is the first coordinate
that satisfies x(i) = max1≤j≤t x(j). In particular when asked for a
subgradient at x1 = 0 it returns e1. Thus x2 must lie on the line
generated by e1. It is easy to see by induction that in fact xs must lie
in the linear span of e1, . . . , es−1. In particular for s ≤ t we necessarily
have xs(t) = 0 and thus f(xs) ≥ 0.

It remains to compute the minimal value of f . Let y be such that
y(i) = − γ

αt for 1 ≤ i ≤ t and y(i) = 0 for t+ 1 ≤ i ≤ n. It is clear that
0 ∈ ∂f(y) and thus the minimal value of f is

f(y) = −γ
2

αt
+ α

2
γ2

α2t
= − γ2

2αt.

Wrapping up, we proved that for any s ≤ t one must have

f(xs)− f(x∗) ≥ γ2

2αt.

Taking γ = L/2 and R = L
2α we proved the lower bound for α-strongly

convex functions (note in particular that ‖y‖2 = γ2

α2t = L2

4α2t ≤ R
2 with

these parameters). On the other taking α = L
R

1
1+
√
t
and γ = L

√
t

1+
√
t

concludes the proof for convex functions (note in particular that ‖y‖2 =
γ2

α2t = R2 with these parameters).

We proceed now to the smooth case. As we will see in the following
proofs we restrict our attention to quadratic functions, and it might
be useful to recall that in this case one can attain the exact optimum
in n calls to the oracle (see Section 2.4). We also recall that for a
twice differentiable function f , β-smoothness is equivalent to the largest
eigenvalue of the Hessians of f being smaller than β at any point, which
we write

∇2f(x) � βIn,∀x.

Furthermore α-strong convexity is equivalent to

∇2f(x) � αIn,∀x.

282 Dimension-free convex optimization

Theorem 3.14. Let t ≤ (n − 1)/2, β > 0. There exists a β-smooth
convex function f such that for any black-box procedure satisfying
(3.15),

min
1≤s≤t

f(xs)− f(x∗) ≥ 3β
32
‖x1 − x∗‖2

(t+ 1)2 .

Proof. In this proof for h : Rn → R we denote h∗ = infx∈Rn h(x). For
k ≤ n let Ak ∈ Rn×n be the symmetric and tridiagonal matrix defined
by

(Ak)i,j =

2, i = j, i ≤ k
−1, j ∈ {i− 1, i+ 1}, i ≤ k, j 6= k + 1
0, otherwise.

It is easy to verify that 0 � Ak � 4In since

x>Akx = 2
k∑
i=1

x(i)2−2
k−1∑
i=1

x(i)x(i+1) = x(1)2+x(k)2+
k−1∑
i=1

(x(i)−x(i+1))2.

We consider now the following β-smooth convex function:

f(x) = β

8x
>A2t+1x−

β

4x
>e1.

Similarly to what happened in the proof Theorem 3.13, one can see
here too that xs must lie in the linear span of e1, . . . , es−1 (because of
our assumption on the black-box procedure). In particular for s ≤ t we
necessarily have xs(i) = 0 for i = s, . . . , n, which implies x>s A2t+1xs =
x>s Asxs. In other words, if we denote

fk(x) = β

8x
>Akx−

β

4x
>e1,

then we just proved that

f(xs)− f∗ = fs(xs)− f∗2t+1 ≥ f∗s − f∗2t+1 ≥ f∗t − f∗2t+1.

Thus it simply remains to compute the minimizer x∗k of fk, its norm,
and the corresponding function value f∗k .

The point x∗k is the unique solution in the span of e1, . . . , ek of
Akx = e1. It is easy to verify that it is defined by x∗k(i) = 1 − i

k+1 for
i = 1, . . . , k. Thus we immediately have:

f∗k = β

8 (x∗k)>Akx∗k −
β

4 (x∗k)>e1 = −β8 (x∗k)>e1 = −β8

(
1− 1

k + 1

)
.

3.5. Lower bounds 283

Furthermore note that

‖x∗k‖2 =
k∑
i=1

(
1− i

k + 1

)2
=

k∑
i=1

(
i

k + 1

)2
≤ k + 1

3 .

Thus one obtains:

f∗t − f∗2t+1 = β

8

(1
t+ 1 −

1
2t+ 2

)
≥ 3β

32
‖x∗2t+1‖2

(t+ 1)2 ,

which concludes the proof.

To simplify the proof of the next theorem we will consider the lim-
iting situation n → +∞. More precisely we assume now that we are
working in `2 = {x = (x(n))n∈N :

∑+∞
i=1 x(i)2 < +∞} rather than in

Rn. Note that all the theorems we proved in this chapter are in fact
valid in an arbitrary Hilbert space H. We chose to work in Rn only for
clarity of the exposition.

Theorem 3.15. Let κ > 1. There exists a β-smooth and α-strongly
convex function f : `2 → R with κ = β/α such that for any t ≥ 1 and
any black-box procedure satisfying (3.15) one has

f(xt)− f(x∗) ≥ α

2

(√
κ− 1√
κ+ 1

)2(t−1)

‖x1 − x∗‖2.

Note that for large values of the condition number κ one has(√
κ− 1√
κ+ 1

)2(t−1)

≈ exp
(
−4(t− 1)√

κ

)
.

Proof. The overall argument is similar to the proof of Theorem 3.14.
Let A : `2 → `2 be the linear operator that corresponds to the infinite
tridiagonal matrix with 2 on the diagonal and −1 on the upper and
lower diagonals. We consider now the following function:

f(x) = α(κ− 1)
8 (〈Ax, x〉 − 2〈e1, x〉) + α

2 ‖x‖
2.

We already proved that 0 � A � 4I which easily implies that f is α-
strongly convex and β-smooth. Now as always the key observation is

284 Dimension-free convex optimization

that for this function, thanks to our assumption on the black-box pro-
cedure, one necessarily has xt(i) = 0,∀i ≥ t. This implies in particular:

‖xt − x∗‖2 ≥
+∞∑
i=t

x∗(i)2.

Furthermore since f is α-strongly convex, one has

f(xt)− f(x∗) ≥ α

2 ‖xt − x
∗‖2.

Thus it only remains to compute x∗. This can be done by differentiating
f and setting the gradient to 0, which gives the following infinite set
of equations

1− 2κ+ 1
κ− 1x

∗(1) + x∗(2) = 0,

x∗(k − 1)− 2κ+ 1
κ− 1x

∗(k) + x∗(k + 1) = 0, ∀k ≥ 2.

It is easy to verify that x∗ defined by x∗(i) =
(√

κ−1√
κ+1

)i
satisfy this

infinite set of equations, and the conclusion of the theorem then follows
by straightforward computations.

3.6 Geometric descent

So far our results leave a gap in the case of smooth optimization: gra-
dient descent achieves an oracle complexity of O(1/ε) (respectively
O(κ log(1/ε)) in the strongly convex case) while we proved a lower
bound of Ω(1/

√
ε) (respectively Ω(

√
κ log(1/ε))). In this section we

close these gaps with the geometric descent method which was re-
cently introduced in Bubeck et al. [2015b]. Historically the first method
with optimal oracle complexity was proposed in Nemirovski and Yudin
[1983]. This method, inspired by the conjugate gradient (see Section
2.4), assumes an oracle to compute plane searches. In Nemirovski [1982]
this assumption was relaxed to a line search oracle (the geometric de-
scent method also requires a line search oracle). Finally in Nesterov
[1983] an optimal method requiring only a first order oracle was in-
troduced. The latter algorithm, called Nesterov’s accelerated gradient

3.6. Geometric descent 285

descent, has been the most influential optimal method for smooth opti-
mization up to this day. We describe and analyze this method in Section
3.7. As we shall see the intuition behind Nesterov’s accelerated gradient
descent (both for the derivation of the algorithm and its analysis) is
not quite transparent, which motivates the present section as geometric
descent has a simple geometric interpretation loosely inspired from the
ellipsoid method (see Section 2.2).

We focus here on the unconstrained optimization of a smooth and
strongly convex function, and we prove that geometric descent achieves
the oracle complexity of O(

√
κ log(1/ε)), thus reducing the complex-

ity of the basic gradient descent by a factor
√
κ. We note that this

improvement is quite relevant for machine learning applications. Con-
sider for example the logistic regression problem described in Section
1.1: this is a smooth and strongly convex problem, with a smoothness
of order of a numerical constant, but with strong convexity equal to the
regularization parameter whose inverse can be as large as the sample
size. Thus in this case κ can be of order of the sample size, and a faster
rate by a factor of

√
κ is quite significant. We also observe that this

improved rate for smooth and strongly convex objectives also implies
an almost optimal rate of O(log(1/ε)/

√
ε) for the smooth case, as one

can simply run geometric descent on the function x 7→ f(x) + ε‖x‖2.
In Section 3.6.1 we describe the basic idea of geometric descent, and

we show how to obtain effortlessly a geometric method with an oracle
complexity of O(κ log(1/ε)) (i.e., similar to gradient descent). Then we
explain why one should expect to be able to accelerate this method in
Section 3.6.2. The geometric descent method is described precisely and
analyzed in Section 3.6.3.

3.6.1 Warm-up: a geometric alternative to gradient descent

We start with some notation. Let B(x, r2) := {y ∈ Rn : ‖y− x‖2 ≤ r2}
(note that the second argument is the radius squared), and

x+ = x− 1
β
∇f(x), and x++ = x− 1

α
∇f(x).

286 Dimension-free convex optimization

|g|

√
1− ε |g|1

√
1− ε

Figure 3.4: One ball shrinks.

Rewriting the definition of strong convexity (3.13) as

f(y) ≥ f(x) +∇f(x)>(y − x) + α
2 ‖y − x‖

2

⇔ α
2 ‖y − x+ 1

α∇f(x)‖2 ≤ ‖∇f(x)‖2

2α − (f(x)− f(y)),

one obtains an enclosing ball for the minimizer of f with the 0th and
1st order information at x:

x∗ ∈ B
(
x++,

‖∇f(x)‖2

α2 − 2
α

(f(x)− f(x∗))
)
.

Furthermore recall that by smoothness (see (3.5)) one has f(x+) ≤
f(x) − 1

2β‖∇f(x)‖2 which allows to shrink the above ball by a factor
of 1− 1

κ and obtain the following:

x∗ ∈ B
(
x++,

‖∇f(x)‖2

α2

(
1− 1

κ

)
− 2
α

(f(x+)− f(x∗))
)

(3.16)

This suggests a natural strategy: assuming that one has an enclosing
ball A := B(x,R2) for x∗ (obtained from previous steps of the strat-
egy), one can then enclose x∗ in a ball B containing the intersection
of B(x,R2) and the ball B

(
x++, ‖∇f(x)‖2

α2

(
1− 1

κ

))
obtained by (3.16).

Provided that the radius of B is a fraction of the radius of A, one can

3.6. Geometric descent 287

√
1− ε |g|

√
1− ε|g|2

√
1−
√

ε

Figure 3.5: Two balls shrink.

then iterate the procedure by replacing A by B, leading to a linear
convergence rate. Evaluating the rate at which the radius shrinks is an
elementary calculation: for any g ∈ Rn, ε ∈ (0, 1), there exists x ∈ Rn

such that

B(0, 1) ∩ B(g, ‖g‖2(1− ε)) ⊂ B(x, 1− ε). (Figure 3.4)

Thus we see that in the strategy described above, the radius squared
of the enclosing ball for x∗ shrinks by a factor 1− 1

κ at each iteration,
thus matching the rate of convergence of gradient descent (see Theorem
3.10).

3.6.2 Acceleration

In the argument from the previous section we missed the following
opportunity: observe that the ball A = B(x,R2) was obtained by inter-
sections of previous balls of the form given by (3.16), and thus the
new value f(x) could be used to reduce the radius of those previ-
ous balls too (an important caveat is that the value f(x) should be
smaller than the values used to build those previous balls). Poten-
tially this could show that the optimum is in fact contained in the
ball B

(
x,R2 − 1

κ‖∇f(x)‖2
)
. By taking the intersection with the ball

288 Dimension-free convex optimization

B
(
x++, ‖∇f(x)‖2

α2

(
1− 1

κ

))
this would allow to obtain a new ball with

radius shrunk by a factor 1 − 1√
κ
(instead of 1 − 1

κ): indeed for any
g ∈ Rn, ε ∈ (0, 1), there exists x ∈ Rn such that

B(0, 1− ε‖g‖2) ∩ B(g, ‖g‖2(1− ε)) ⊂ B(x, 1−
√
ε). (Figure 3.5)

Thus it only remains to deal with the caveat noted above, which we
do via a line search. In turns this line search might shift the new ball
(3.16), and to deal with this we shall need the following strengthening
of the above set inclusion (we refer to Bubeck et al. [2015b] for a simple
proof of this result):

Lemma 3.16. Let a ∈ Rn and ε ∈ (0, 1), g ∈ R+. Assume that ‖a‖ ≥ g.
Then there exists c ∈ Rn such that for any δ ≥ 0,

B(0, 1− εg2 − δ) ∩ B(a, g2(1− ε)− δ) ⊂ B
(
c, 1−

√
ε− δ

)
.

3.6.3 The geometric descent method

Let x0 ∈ Rn, c0 = x++
0 , and R2

0 =
(
1− 1

κ

)
‖∇f(x0)‖2

α2 . For any t ≥ 0 let

xt+1 = argmin
x∈{(1−λ)ct+λx+

t , λ∈R}
f(x),

and ct+1 (respectively R2
t+1) be the center (respectively the squared

radius) of the ball given by (the proof of) Lemma 3.16 which contains

B
(
ct, R

2
t −
‖∇f(xt+1)‖2

α2κ

)
∩ B

(
x++
t+1,
‖∇f(xt+1)‖2

α2

(
1− 1

κ

))
.

Formulas for ct+1 and R2
t+1 are given at the end of this section.

Theorem 3.17. For any t ≥ 0, one has x∗ ∈ B(ct, R2
t), R2

t+1 ≤(
1− 1√

κ

)
R2
t , and thus

‖x∗ − ct‖2 ≤
(

1− 1√
κ

)t
R2

0.

Proof. We will prove a stronger claim by induction that for each t ≥ 0,
one has

x∗ ∈ B
(
ct, R

2
t −

2
α

(
f(x+

t)− f(x∗)
))

.

3.7. Nesterov’s accelerated gradient descent 289

The case t = 0 follows immediately by (3.16). Let us assume that the
above display is true for some t ≥ 0. Then using f(x+

t+1) ≤ f(xt+1) −
1

2β‖∇f(xt+1)‖2 ≤ f(x+
t)− 1

2β‖∇f(xt+1)‖2, one gets

x∗ ∈ B
(
ct, R

2
t −
‖∇f(xt+1)‖2

α2κ
− 2
α

(
f(x+

t+1)− f(x∗)
))

.

Furthermore by (3.16) one also has

B
(
x++
t+1,
‖∇f(xt+1)‖2

α2

(
1− 1

κ

)
− 2
α

(
f(x+

t+1)− f(x∗)
))

.

Thus it only remains to observe that the squared radius of the ball given
by Lemma 3.16 which encloses the intersection of the two above balls is
smaller than

(
1− 1√

κ

)
R2
t − 2

α(f(x+
t+1)−f(x∗)). We apply Lemma 3.16

after moving ct to the origin and scaling distances by Rt. We set ε = 1
κ ,

g = ‖∇f(xt+1)‖
α , δ = 2

α

(
f(x+

t+1)− f(x∗)
)
and a = x++

t+1 − ct. The line
search step of the algorithm implies that ∇f(xt+1)>(xt+1−ct) = 0 and
therefore, ‖a‖ = ‖x++

t+1 − ct‖ ≥ ‖∇f(xt+1)‖/α = g and Lemma 3.16
applies to give the result.

One can use the following formulas for ct+1 and R2
t+1 (they are

derived from the proof of Lemma 3.16). If |∇f(xt+1)|2/α2 < R2
t /2

then one can tate ct+1 = x++
t+1 and R2

t+1 = |∇f(xt+1)|2
α2

(
1− 1

κ

)
. On the

other hand if |∇f(xt+1)|2/α2 ≥ R2
t /2 then one can tate

ct+1 = ct + R2
t + |xt+1 − ct|2

2|x++
t+1 − ct|2

(x++
t+1 − ct),

R2
t+1 = R2

t −
|∇f(xt+1)|2

α2κ
−
(
R2
t + ‖xt+1 − ct‖2

2‖x++
t+1 − ct‖

)2

.

3.7 Nesterov’s accelerated gradient descent

We describe here the original Nesterov’s method which attains the op-
timal oracle complexity for smooth convex optimization. We give the
details of the method both for the strongly convex and non-strongly
convex case. We refer to Su et al. [2014] for a recent interpretation of

290 Dimension-free convex optimization

xs

ys

ys+1

xs+1

− 1
β∇f(xs)

ys+2

xs+2

Figure 3.6: Illustration of Nesterov’s accelerated gradient descent.

the method in terms of differential equations, and to Allen-Zhu and
Orecchia [2014] for its relation to mirror descent (see Chapter 4).

3.7.1 The smooth and strongly convex case

Nesterov’s accelerated gradient descent, illustrated in Figure 3.6, can
be described as follows: Start at an arbitrary initial point x1 = y1 and
then iterate the following equations for t ≥ 1,

yt+1 = xt −
1
β
∇f(xt),

xt+1 =
(

1 +
√
κ− 1√
κ+ 1

)
yt+1 −

√
κ− 1√
κ+ 1yt.

Theorem 3.18. Let f be α-strongly convex and β-smooth, then Nes-
terov’s accelerated gradient descent satisfies

f(yt)− f(x∗) ≤ α+ β

2 ‖x1 − x∗‖2 exp
(
− t− 1√

κ

)
.

Proof. We define α-strongly convex quadratic functions Φs, s ≥ 1 by

3.7. Nesterov’s accelerated gradient descent 291

induction as follows:

Φ1(x) = f(x1) + α

2 ‖x− x1‖2,

Φs+1(x) =
(

1− 1√
κ

)
Φs(x)

+ 1√
κ

(
f(xs) +∇f(xs)>(x− xs) + α

2 ‖x− xs‖
2
)
. (3.17)

Intuitively Φs becomes a finer and finer approximation (from below) to
f in the following sense:

Φs+1(x) ≤ f(x) +
(

1− 1√
κ

)s
(Φ1(x)− f(x)). (3.18)

The above inequality can be proved immediately by induction, using
the fact that by α-strong convexity one has

f(xs) +∇f(xs)>(x− xs) + α

2 ‖x− xs‖
2 ≤ f(x).

Equation (3.18) by itself does not say much, for it to be useful one
needs to understand how “far" below f is Φs. The following inequality
answers this question:

f(ys) ≤ min
x∈Rn

Φs(x). (3.19)

The rest of the proof is devoted to showing that (3.19) holds true, but
first let us see how to combine (3.18) and (3.19) to obtain the rate given
by the theorem (we use that by β-smoothness one has f(x)− f(x∗) ≤
β
2 ‖x− x

∗‖2):

f(yt)− f(x∗) ≤ Φt(x∗)− f(x∗)

≤
(

1− 1√
κ

)t−1
(Φ1(x∗)− f(x∗))

≤ α+ β

2 ‖x1 − x∗‖2
(

1− 1√
κ

)t−1
.

We now prove (3.19) by induction (note that it is true at s = 1 since
x1 = y1). Let Φ∗s = minx∈Rn Φs(x). Using the definition of ys+1 (and

292 Dimension-free convex optimization

β-smoothness), convexity, and the induction hypothesis, one gets

f(ys+1) ≤ f(xs)−
1

2β ‖∇f(xs)‖2

=
(

1− 1√
κ

)
f(ys) +

(
1− 1√

κ

)
(f(xs)− f(ys))

+ 1√
κ
f(xs)−

1
2β ‖∇f(xs)‖2

≤
(

1− 1√
κ

)
Φ∗s +

(
1− 1√

κ

)
∇f(xs)>(xs − ys)

+ 1√
κ
f(xs)−

1
2β ‖∇f(xs)‖2.

Thus we now have to show that

Φ∗s+1 ≥
(

1− 1√
κ

)
Φ∗s +

(
1− 1√

κ

)
∇f(xs)>(xs − ys)

+ 1√
κ
f(xs)−

1
2β ‖∇f(xs)‖2. (3.20)

To prove this inequality we have to understand better the functions
Φs. First note that ∇2Φs(x) = αIn (immediate by induction) and thus
Φs has to be of the following form:

Φs(x) = Φ∗s + α

2 ‖x− vs‖
2,

for some vs ∈ Rn. Now observe that by differentiating (3.17) and using
the above form of Φs one obtains

∇Φs+1(x) = α

(
1− 1√

κ

)
(x− vs) + 1√

κ
∇f(xs) + α√

κ
(x− xs).

In particular Φs+1 is by definition minimized at vs+1 which can now be
defined by induction using the above identity, precisely:

vs+1 =
(

1− 1√
κ

)
vs + 1√

κ
xs −

1
α
√
κ
∇f(xs). (3.21)

Using the form of Φs and Φs+1, as well as the original definition (3.17)
one gets the following identity by evaluating Φs+1 at xs:

Φ∗s+1 + α

2 ‖xs − vs+1‖2

=
(

1− 1√
κ

)
Φ∗s + α

2

(
1− 1√

κ

)
‖xs − vs‖2 + 1√

κ
f(xs). (3.22)

3.7. Nesterov’s accelerated gradient descent 293

Note that thanks to (3.21) one has

‖xs − vs+1‖2 =
(

1− 1√
κ

)2
‖xs − vs‖2 + 1

α2κ
‖∇f(xs)‖2

− 2
α
√
κ

(
1− 1√

κ

)
∇f(xs)>(vs − xs),

which combined with (3.22) yields

Φ∗s+1 =
(

1− 1√
κ

)
Φ∗s + 1√

κ
f(xs) + α

2
√
κ

(
1− 1√

κ

)
‖xs − vs‖2

− 1
2β ‖∇f(xs)‖2 + 1√

κ

(
1− 1√

κ

)
∇f(xs)>(vs − xs).

Finally we show by induction that vs − xs =
√
κ(xs − ys), which con-

cludes the proof of (3.20) and thus also concludes the proof of the
theorem:

vs+1 − xs+1 =
(

1− 1√
κ

)
vs + 1√

κ
xs −

1
α
√
κ
∇f(xs)− xs+1

=
√
κxs − (

√
κ− 1)ys −

√
κ

β
∇f(xs)− xs+1

=
√
κys+1 − (

√
κ− 1)ys − xs+1

=
√
κ(xs+1 − ys+1),

where the first equality comes from (3.21), the second from the induc-
tion hypothesis, the third from the definition of ys+1 and the last one
from the definition of xs+1.

3.7.2 The smooth case

In this section we show how to adapt Nesterov’s accelerated gradient
descent for the case α = 0, using a time-varying combination of the
elements in the primary sequence (yt). First we define the following
sequences:

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2 , and γt = 1− λt
λt+1

.

294 Dimension-free convex optimization

(Note that γt ≤ 0.) Now the algorithm is simply defined by the following
equations, with x1 = y1 an arbitrary initial point,

yt+1 = xt −
1
β
∇f(xt),

xt+1 = (1− γs)yt+1 + γtyt.

Theorem 3.19. Let f be a convex and β-smooth function, then Nes-
terov’s accelerated gradient descent satisfies

f(yt)− f(x∗) ≤ 2β‖x1 − x∗‖2

t2
.

We follow here the proof of Beck and Teboulle [2009]. We also refer
to Tseng [2008] for a proof with simpler step-sizes.

Proof. Using the unconstrained version of Lemma 3.6 one obtains

f(ys+1)− f(ys)

≤ ∇f(xs)>(xs − ys)−
1

2β ‖∇f(xs)‖2

= β(xs − ys+1)>(xs − ys)−
β

2 ‖xs − ys+1‖2. (3.23)

Similarly we also get

f(ys+1)− f(x∗) ≤ β(xs − ys+1)>(xs − x∗)−
β

2 ‖xs − ys+1‖2. (3.24)

Now multiplying (3.23) by (λs−1) and adding the result to (3.24), one
obtains with δs = f(ys)− f(x∗),

λsδs+1 − (λs − 1)δs

≤ β(xs − ys+1)>(λsxs − (λs − 1)ys − x∗)−
β

2λs‖xs − ys+1‖2.

Multiplying this inequality by λs and using that by definition λ2
s−1 =

λ2
s−λs, as well as the elementary identity 2a>b−‖a‖2 = ‖b‖2−‖b−a‖2,

3.7. Nesterov’s accelerated gradient descent 295

one obtains

λ2
sδs+1 − λ2

s−1δs

≤ β

2

(
2λs(xs − ys+1)>(λsxs − (λs − 1)ys − x∗)− ‖λs(ys+1 − xs)‖2

)
= β

2

(
‖λsxs − (λs − 1)ys − x∗‖2 − ‖λsys+1 − (λs − 1)ys − x∗‖2

)
.

(3.25)

Next remark that, by definition, one has

xs+1 = ys+1 + γs(ys − ys+1)
⇔ λs+1xs+1 = λs+1ys+1 + (1− λs)(ys − ys+1)
⇔ λs+1xs+1 − (λs+1 − 1)ys+1 = λsys+1 − (λs − 1)ys. (3.26)

Putting together (3.25) and (3.26) one gets with us = λsxs − (λs −
1)ys − x∗,

λ2
sδs+1 − λ2

s−1δ
2
s ≤

β

2

(
‖us‖2 − ‖us+1‖2

)
.

Summing these inequalities from s = 1 to s = t− 1 one obtains:

δt ≤
β

2λ2
t−1
‖u1‖2.

By induction it is easy to see that λt−1 ≥ t
2 which concludes the proof.

4

Almost dimension-free convex optimization in
non-Euclidean spaces

In the previous chapter we showed that dimension-free oracle com-
plexity is possible when the objective function f and the constraint
set X are well-behaved in the Euclidean norm; e.g. if for all points
x ∈ X and all subgradients g ∈ ∂f(x), one has that ‖x‖2 and ‖g‖2
are independent of the ambient dimension n. If this assumption is not
met then the gradient descent techniques of Chapter 3 may lose their
dimension-free convergence rates. For instance consider a differentiable
convex function f defined on the Euclidean ball B2,n and such that
‖∇f(x)‖∞ ≤ 1,∀x ∈ B2,n. This implies that ‖∇f(x)‖2 ≤

√
n, and thus

projected gradient descent will converge to the minimum of f on B2,n
at a rate

√
n/t. In this chapter we describe the method of Nemirovski

and Yudin [1983], known as mirror descent, which allows to find the
minimum of such functions f over the `1-ball (instead of the Euclidean
ball) at the much faster rate

√
log(n)/t. This is only one example of

the potential of mirror descent. This chapter is devoted to the descrip-
tion of mirror descent and some of its alternatives. The presentation
is inspired from Beck and Teboulle [2003], [Chapter 11, Cesa-Bianchi
and Lugosi [2006]], Rakhlin [2009], Hazan [2011], Bubeck [2011].

296

297

In order to describe the intuition behind the method let us abstract
the situation for a moment and forget that we are doing optimization in
finite dimension. We already observed that projected gradient descent
works in an arbitrary Hilbert space H. Suppose now that we are in-
terested in the more general situation of optimization in some Banach
space B. In other words the norm that we use to measure the various
quantity of interest does not derive from an inner product (think of
B = `1 for example). In that case the gradient descent strategy does
not even make sense: indeed the gradients (more formally the Fréchet
derivative) ∇f(x) are elements of the dual space B∗ and thus one can-
not perform the computation x − η∇f(x) (it simply does not make
sense). We did not have this problem for optimization in a Hilbert
space H since by Riesz representation theorem H∗ is isometric to H.
The great insight of Nemirovski and Yudin is that one can still do a
gradient descent by first mapping the point x ∈ B into the dual space
B∗, then performing the gradient update in the dual space, and finally
mapping back the resulting point to the primal space B. Of course the
new point in the primal space might lie outside of the constraint set
X ⊂ B and thus we need a way to project back the point on the con-
straint set X . Both the primal/dual mapping and the projection are
based on the concept of a mirror map which is the key element of the
scheme. Mirror maps are defined in Section 4.1, and the above scheme
is formally described in Section 4.2.

In the rest of this chapter we fix an arbitrary norm ‖ · ‖ on Rn,
and a compact convex set X ⊂ Rn. The dual norm ‖ · ‖∗ is defined as
‖g‖∗ = supx∈Rn:‖x‖≤1 g

>x. We say that a convex function f : X → R
is (i) L-Lipschitz w.r.t. ‖ · ‖ if ∀x ∈ X , g ∈ ∂f(x), ‖g‖∗ ≤ L, (ii) β-
smooth w.r.t. ‖ · ‖ if ‖∇f(x)−∇f(y)‖∗ ≤ β‖x−y‖,∀x, y ∈ X , and (iii)
α-strongly convex w.r.t. ‖ · ‖ if

f(x)− f(y) ≤ g>(x− y)− α

2 ‖x− y‖
2,∀x, y ∈ X , g ∈ ∂f(x).

We also define the Bregman divergence associated to f as

Df (x, y) = f(x)− f(y)−∇f(y)>(x− y).

The following identity will be useful several times:

(∇f(x)−∇f(y))>(x− z) = Df (x, y) +Df (z, x)−Df (z, y). (4.1)

298 Almost dimension-free convex optimization in non-Euclidean spaces

4.1 Mirror maps

Let D ⊂ Rn be a convex open set such that X is included in its closure,
that is X ⊂ D, and X ∩ D 6= ∅. We say that Φ : D → R is a mirror
map if it safisfies the following properties1:

(i) Φ is strictly convex and differentiable.

(ii) The gradient of Φ takes all possible values, that is ∇Φ(D) = Rn.

(iii) The gradient of Φ diverges on the boundary of D, that is

lim
x→∂D

‖∇Φ(x)‖ = +∞.

In mirror descent the gradient of the mirror map Φ is used to map
points from the “primal" to the “dual" (note that all points lie in Rn so
the notions of primal and dual spaces only have an intuitive meaning).
Precisely a point x ∈ X ∩D is mapped to ∇Φ(x), from which one takes
a gradient step to get to ∇Φ(x) − η∇f(x). Property (ii) then allows
us to write the resulting point as ∇Φ(y) = ∇Φ(x) − η∇f(x) for some
y ∈ D. The primal point y may lie outside of the set of constraints
X , in which case one has to project back onto X . In mirror descent
this projection is done via the Bregman divergence associated to Φ.
Precisely one defines

ΠΦ
X (y) = argmin

x∈X∩D
DΦ(x, y).

Property (i) and (iii) ensures the existence and uniqueness of this pro-
jection (in particular since x 7→ DΦ(x, y) is locally increasing on the
boundary of D). The following lemma shows that the Bregman diver-
gence essentially behaves as the Euclidean norm squared in terms of
projections (recall Lemma 3.1).

Lemma 4.1. Let x ∈ X ∩ D and y ∈ D, then

(∇Φ(ΠΦ
X (y))−∇Φ(y))>(ΠΦ

X (y)− x) ≤ 0,
1Assumption (ii) can be relaxed in some cases, see for example Audibert et al.

[2014].

4.2. Mirror descent 299

D

Rn
X

xt

xt+1

yt+1

projection (4.3)

∇Φ(xt)

∇Φ(yt+1)
gradient step

(4.2)

∇Φ

(∇Φ)−1

Figure 4.1: Illustration of mirror descent.

which also implies

DΦ(x,ΠΦ
X (y)) +DΦ(ΠΦ

X (y), y) ≤ DΦ(x, y).

Proof. The proof is an immediate corollary of Proposition 1.3 together
with the fact that ∇xDΦ(x, y) = ∇Φ(x)−∇Φ(y).

4.2 Mirror descent

We can now describe the mirror descent strategy based on a mirror
map Φ. Let x1 ∈ argminx∈X∩D Φ(x). Then for t ≥ 1, let yt+1 ∈ D such
that

∇Φ(yt+1) = ∇Φ(xt)− ηgt, where gt ∈ ∂f(xt), (4.2)

and
xt+1 ∈ ΠΦ

X (yt+1). (4.3)

See Figure 4.1 for an illustration of this procedure.

Theorem 4.2. Let Φ be a mirror map ρ-strongly convex on X ∩ D
w.r.t. ‖ · ‖. Let R2 = supx∈X∩D Φ(x) − Φ(x1), and f be convex and

300 Almost dimension-free convex optimization in non-Euclidean spaces

L-Lipschitz w.r.t. ‖ · ‖. Then mirror descent with η = R
L

√
2ρ
t satisfies

f

(1
t

t∑
s=1

xs

)
− f(x∗) ≤ RL

√
2
ρt
.

Proof. Let x ∈ X ∩D. The claimed bound will be obtained by taking a
limit x→ x∗. Now by convexity of f , the definition of mirror descent,
equation (4.1), and Lemma 4.1, one has

f(xs)− f(x)
≤ g>s (xs − x)

= 1
η

(∇Φ(xs)−∇Φ(ys+1))>(xs − x)

= 1
η

(
DΦ(x, xs) +DΦ(xs, ys+1)−DΦ(x, ys+1)

)
≤ 1
η

(
DΦ(x, xs) +DΦ(xs, ys+1)−DΦ(x, xs+1)−DΦ(xs+1, ys+1)

)
.

The term DΦ(x, xs) −DΦ(x, xs+1) will lead to a telescopic sum when
summing over s = 1 to s = t, and it remains to bound the other term
as follows using ρ-strong convexity of the mirror map and az − bz2 ≤
a2

4b , ∀z ∈ R:

DΦ(xs, ys+1)−DΦ(xs+1, ys+1)
= Φ(xs)− Φ(xs+1)−∇Φ(ys+1)>(xs − xs+1)

≤ (∇Φ(xs)−∇Φ(ys+1))>(xs − xs+1)− ρ

2‖xs − xs+1‖2

= ηg>s (xs − xs+1)− ρ

2‖xs − xs+1‖2

≤ ηL‖xs − xs+1‖ −
ρ

2‖xs − xs+1‖2

≤ (ηL)2

2ρ .

We proved
t∑

s=1

(
f(xs)− f(x)

)
≤ DΦ(x, x1)

η
+ η

L2t

2ρ ,

which concludes the proof up to trivial computation.

4.3. Standard setups for mirror descent 301

We observe that one can rewrite mirror descent as follows:

xt+1 = argmin
x∈X∩D

DΦ(x, yt+1)

= argmin
x∈X∩D

Φ(x)−∇Φ(yt+1)>x (4.4)

= argmin
x∈X∩D

Φ(x)− (∇Φ(xt)− ηgt)>x

= argmin
x∈X∩D

ηg>t x+DΦ(x, xt). (4.5)

This last expression is often taken as the definition of mirror descent
(see Beck and Teboulle [2003]). It gives a proximal point of view on
mirror descent: the method is trying to minimize the local linearization
of the function while not moving too far away from the previous point,
with distances measured via the Bregman divergence of the mirror map.

4.3 Standard setups for mirror descent

“Ball setup". The simplest version of mirror descent is obtained by
taking Φ(x) = 1

2‖x‖
2
2 on D = Rn. The function Φ is a mirror map

strongly convex w.r.t. ‖ · ‖2, and furthermore the associated Bregman
divergence is given by DΦ(x, y) = 1

2‖x− y‖
2
2. Thus in that case mirror

descent is exactly equivalent to projected subgradient descent, and the
rate of convergence obtained in Theorem 4.2 recovers our earlier result
on projected subgradient descent.

“Simplex setup". A more interesting choice of a mirror map is given
by the negative entropy

Φ(x) =
n∑
i=1

x(i) log x(i),

on D = Rn++. In that case the gradient update ∇Φ(yt+1) = ∇Φ(xt) −
η∇f(xt) can be written equivalently as

yt+1(i) = xt(i) exp
(
− η[∇f(xt)](i)

)
, i = 1, . . . , n.

The Bregman divergence of this mirror map is given by DΦ(x, y) =∑n
i=1 x(i) log x(i)

y(i) (also known as the Kullback-Leibler divergence). It

302 Almost dimension-free convex optimization in non-Euclidean spaces

is easy to verify that the projection with respect to this Bregman di-
vergence on the simplex ∆n = {x ∈ Rn+ :

∑n
i=1 x(i) = 1} amounts

to a simple renormalization y 7→ y/‖y‖1. Furthermore it is also easy
to verify that Φ is 1-strongly convex w.r.t. ‖ · ‖1 on ∆n (this result
is known as Pinsker’s inequality). Note also that for X = ∆n one has
x1 = (1/n, . . . , 1/n) and R2 = logn.

The above observations imply that when minimizing on the
simplex ∆n a function f with subgradients bounded in `∞-norm,
mirror descent with the negative entropy achieves a rate of convergence
of order

√
logn
t . On the other hand the regular subgradient descent

achieves only a rate of order
√

n
t in this case!

“Spectrahedron setup". We consider here functions defined on ma-
trices, and we are interested in minimizing a function f on the spectra-
hedron Sn defined as:

Sn =
{
X ∈ Sn+ : Tr(X) = 1

}
.

In this setting we consider the mirror map on D = Sn++ given by the
negative von Neumann entropy:

Φ(X) =
n∑
i=1

λi(X) log λi(X),

where λ1(X), . . . , λn(X) are the eigenvalues of X. It can be shown that
the gradient update ∇Φ(Yt+1) = ∇Φ(Xt) − η∇f(Xt) can be written
equivalently as

Yt+1 = exp
(

logXt − η∇f(Xt)
)
,

where the matrix exponential and matrix logarithm are defined as
usual. Furthermore the projection on Sn is a simple trace renormal-
ization.

With highly non-trivial computation one can show that Φ is 1
2 -

strongly convex with respect to the Schatten 1-norm defined as

‖X‖1 =
n∑
i=1

λi(X).

4.4. Lazy mirror descent, aka Nesterov’s dual averaging 303

It is easy to see that for X = Sn one has x1 = 1
n In and R2 = logn. In

other words the rate of convergence for optimization on the spectrahe-
dron is the same than on the simplex!

4.4 Lazy mirror descent, aka Nesterov’s dual averaging

In this section we consider a slightly more efficient version of mirror
descent for which we can prove that Theorem 4.2 still holds true. This
alternative algorithm can be advantageous in some situations (such
as distributed settings), but the basic mirror descent scheme remains
important for extensions considered later in this text (saddle points,
stochastic oracles, ...).

In lazy mirror descent, also commonly known as Nesterov’s dual
averaging or simply dual averaging, one replaces (4.2) by

∇Φ(yt+1) = ∇Φ(yt)− ηgt,

and also y1 is such that ∇Φ(y1) = 0. In other words instead of go-
ing back and forth between the primal and the dual, dual averaging
simply averages the gradients in the dual, and if asked for a point in
the primal it simply maps the current dual point to the primal using
the same methodology as mirror descent. In particular using (4.4) one
immediately sees that dual averaging is defined by:

xt = argmin
x∈X∩D

η
t−1∑
s=1

g>s x+ Φ(x). (4.6)

Theorem 4.3. Let Φ be a mirror map ρ-strongly convex on X ∩ D
w.r.t. ‖ · ‖. Let R2 = supx∈X∩D Φ(x) − Φ(x1), and f be convex and
L-Lipschitz w.r.t. ‖ · ‖. Then dual averaging with η = R

L

√
ρ
2t satisfies

f

(1
t

t∑
s=1

xs

)
− f(x∗) ≤ 2RL

√
2
ρt
.

Proof. We define ψt(x) = η
∑t
s=1 g

>
s x + Φ(x), so that xt ∈

argminx∈X∩D ψt−1(x). Since Φ is ρ-strongly convex one clearly has that

304 Almost dimension-free convex optimization in non-Euclidean spaces

ψt is ρ-strongly convex, and thus

ψt(xt+1)− ψt(xt) ≤ ∇ψt(xt+1)>(xt+1 − xt)−
ρ

2‖xt+1 − xt‖2

≤ −ρ2‖xt+1 − xt‖2,

where the second inequality comes from the first order optimality con-
dition for xt+1 (see Proposition 1.3). Next observe that

ψt(xt+1)− ψt(xt) = ψt−1(xt+1)− ψt−1(xt) + ηg>t (xt+1 − xt)
≥ ηg>t (xt+1 − xt).

Putting together the two above displays and using Cauchy-Schwarz
(with the assumption ‖gt‖∗ ≤ L) one obtains

ρ

2‖xt+1 − xt‖2 ≤ ηg>t (xt − xt+1) ≤ ηL‖xt − xt+1‖.

In particular this shows that ‖xt+1−xt‖ ≤ 2ηL
ρ and thus with the above

display

g>t (xt − xt+1) ≤ 2ηL2

ρ
. (4.7)

Now we claim that for any x ∈ X ∩ D,
t∑

s=1
g>s (xs − x) ≤

t∑
s=1

g>s (xs − xs+1) + Φ(x)− Φ(x1)
η

, (4.8)

which would clearly conclude the proof thanks to (4.7) and straightfor-
ward computations. Equation (4.8) is equivalent to

t∑
s=1

g>s xs+1 + Φ(x1)
η
≤

t∑
s=1

g>s x+ Φ(x)
η

,

and we now prove the latter equation by induction. At t = 0 it is
true since x1 ∈ argminx∈X∩D Φ(x). The following inequalities prove the
inductive step, where we use the induction hypothesis at x = xt+1 for
the first inequality, and the definition of xt+1 for the second inequality:
t∑

s=1
g>s xs+1+ Φ(x1)

η
≤ g>t xt+1+

t−1∑
s=1

g>s xt+1+ Φ(xt+1)
η

≤
t∑

s=1
g>s x+ Φ(x)

η
.

4.5. Mirror prox 305

4.5 Mirror prox

It can be shown that mirror descent accelerates for smooth functions to
the rate 1/t. We will prove this result in Chapter 6 (see Theorem 6.3).
We describe here a variant of mirror descent which also attains the rate
1/t for smooth functions. This method is called mirror prox and it was
introduced in Nemirovski [2004a]. The true power of mirror prox will
reveal itself later in the text when we deal with smooth representations
of non-smooth functions as well as stochastic oracles2.

Mirror prox is described by the following equations:

∇Φ(y′t+1) = ∇Φ(xt)− η∇f(xt),

yt+1 ∈ argmin
x∈X∩D

DΦ(x, y′t+1),

∇Φ(x′t+1) = ∇Φ(xt)− η∇f(yt+1),

xt+1 ∈ argmin
x∈X∩D

DΦ(x, x′t+1).

In words the algorithm first makes a step of mirror descent to go from
xt to yt+1, and then it makes a similar step to obtain xt+1, starting
again from xt but this time using the gradient of f evaluated at yt+1
(instead of xt), see Figure 4.2 for an illustration. The following result
justifies the procedure.

Theorem 4.4. Let Φ be a mirror map ρ-strongly convex on X ∩D w.r.t.
‖ · ‖. Let R2 = supx∈X∩D Φ(x)−Φ(x1), and f be convex and β-smooth
w.r.t. ‖ · ‖. Then mirror prox with η = ρ

β satisfies

f

(1
t

t∑
s=1

ys+1

)
− f(x∗) ≤ βR2

ρt
.

2Basically mirror prox allows for a smooth vector field point of view (see Section
4.6), while mirror descent does not.

306 Almost dimension-free convex optimization in non-Euclidean spaces

D

Rn
X

xt

yt+1

y′t+1

projection

xt+1

x′t+1

∇Φ(xt)

∇Φ(y′t+1)

∇Φ(x′t+1)

−η∇f(yt+1)−η∇f(xt)

∇Φ

(∇Φ)−1

Figure 4.2: Illustration of mirror prox.

Proof. Let x ∈ X ∩ D. We write

f(yt+1)− f(x) ≤ ∇f(yt+1)>(yt+1 − x)
= ∇f(yt+1)>(xt+1 − x) +∇f(xt)>(yt+1 − xt+1)

+(∇f(yt+1)−∇f(xt))>(yt+1 − xt+1).

We will now bound separately these three terms. For the first one, using
the definition of the method, Lemma 4.1, and equation (4.1), one gets

η∇f(yt+1)>(xt+1 − x)
= (∇Φ(xt)−∇Φ(x′t+1))>(xt+1 − x)
≤ (∇Φ(xt)−∇Φ(xt+1))>(xt+1 − x)
= DΦ(x, xt)−DΦ(x, xt+1)−DΦ(xt+1, xt).

For the second term using the same properties than above and the

4.6. The vector field point of view on MD, DA, and MP 307

strong-convexity of the mirror map one obtains

η∇f(xt)>(yt+1 − xt+1)
= (∇Φ(xt)−∇Φ(y′t+1))>(yt+1 − xt+1)
≤ (∇Φ(xt)−∇Φ(yt+1))>(yt+1 − xt+1)
= DΦ(xt+1, xt)−DΦ(xt+1, yt+1)−DΦ(yt+1, xt) (4.9)

≤ DΦ(xt+1, xt)−
ρ

2‖xt+1 − yt+1‖2 −
ρ

2‖yt+1 − xt‖2.

Finally for the last term, using Cauchy-Schwarz, β-smoothness, and
2ab ≤ a2 + b2 one gets

(∇f(yt+1)−∇f(xt))>(yt+1 − xt+1)
≤ ‖∇f(yt+1)−∇f(xt)‖∗ · ‖yt+1 − xt+1‖
≤ β‖yt+1 − xt‖ · ‖yt+1 − xt+1‖

≤ β

2 ‖yt+1 − xt‖2 + β

2 ‖yt+1 − xt+1‖2.

Thus summing up these three terms and using that η = ρ
β one gets

f(yt+1)− f(x) ≤ DΦ(x, xt)−DΦ(x, xt+1)
η

.

The proof is concluded with straightforward computations.

4.6 The vector field point of view on MD, DA, and MP

In this section we consider a mirror map Φ that satisfies the assump-
tions from Theorem 4.2.

By inspecting the proof of Theorem 4.2 one can see that for arbi-
trary vectors g1, . . . , gt ∈ Rn the mirror descent strategy described by
(4.2) or (4.3) (or alternatively by (4.5)) satisfies for any x ∈ X ∩ D,

t∑
s=1

g>s (xs − x) ≤ R2

η
+ η

2ρ

t∑
s=1
‖gs‖2∗. (4.10)

The observation that the sequence of vectors (gs) does not have to come
from the subgradients of a fixed function f is the starting point for the
theory of online learning, see Bubeck [2011] for more details. In this

308 Almost dimension-free convex optimization in non-Euclidean spaces

monograph we will use this observation to generalize mirror descent to
saddle point calculations as well as stochastic settings. We note that
we could also use dual averaging (defined by (4.6)) which satisfies

t∑
s=1

g>s (xs − x) ≤ R2

η
+ 2η

ρ

t∑
s=1
‖gs‖2∗.

In order to generalize mirror prox we simply replace the gradient ∇f
by an arbitrary vector field g : X → Rn which yields the following
equations:

∇Φ(y′t+1) = ∇Φ(xt)− ηg(xt),
yt+1 ∈ argmin

x∈X∩D
DΦ(x, y′t+1),

∇Φ(x′t+1) = ∇Φ(xt)− ηg(yt+1),
xt+1 ∈ argmin

x∈X∩D
DΦ(x, x′t+1).

Under the assumption that the vector field is β-Lipschitz w.r.t. ‖ · ‖,
i.e., ‖g(x)− g(y)‖∗ ≤ β‖x− y‖ one obtains with η = ρ

β

t∑
s=1

g(ys+1)>(ys+1 − x) ≤ βR2

ρ
. (4.11)

5

Beyond the black-box model

In the black-box model non-smoothness dramatically deteriorates the
rate of convergence of first order methods from 1/t2 to 1/

√
t. However,

as we already pointed out in Section 1.5, we (almost) always know the
function to be optimized globally. In particular the “source" of non-
smoothness can often be identified. For instance the LASSO objective
(see Section 1.1) is non-smooth, but it is a sum of a smooth part (the
least squares fit) and a simple non-smooth part (the `1-norm). Using
this specific structure we will propose in Section 5.1 a first order method
with a 1/t2 convergence rate, despite the non-smoothness. In Section
5.2 we consider another type of non-smoothness that can effectively
be overcome, where the function is the maximum of smooth functions.
Finally we conclude this chapter with a concise description of interior
point methods, for which the structural assumption is made on the
constraint set rather than on the objective function.

309

310 Beyond the black-box model

5.1 Sum of a smooth and a simple non-smooth term

We consider here the following problem1:

min
x∈Rn

f(x) + g(x),

where f is convex and β-smooth, and g is convex. We assume that f
can be accessed through a first order oracle, and that g is known and
“simple". What we mean by simplicity will be clear from the description
of the algorithm. For instance a separable function, that is g(x) =∑n
i=1 gi(x(i)), will be considered as simple. The prime example being

g(x) = ‖x‖1. This section is inspired from Beck and Teboulle [2009]
(see also Nesterov [2007], Wright et al. [2009]).

ISTA (Iterative Shrinkage-Thresholding Algorithm)

Recall that gradient descent on the smooth function f can be written
as (see (4.5))

xt+1 = argmin
x∈Rn

η∇f(xt)>x+ 1
2‖x− xt‖

2
2.

Here one wants to minimize f + g, and g is assumed to be known and
“simple". Thus it seems quite natural to consider the following update
rule, where only f is locally approximated with a first order oracle:

xt+1 = argmin
x∈Rn

η(g(x) +∇f(xt)>x) + 1
2‖x− xt‖

2
2

= argmin
x∈Rn

g(x) + 1
2η‖x− (xt − η∇f(xt))‖22. (5.1)

The algorithm described by the above iteration is known as ISTA (Iter-
ative Shrinkage-Thresholding Algorithm). In terms of convergence rate
it is easy to show that ISTA has the same convergence rate on f + g

as gradient descent on f . More precisely with η = 1
β one has

f(xt) + g(xt)− (f(x∗) + g(x∗)) ≤ β‖x1 − x∗‖22
2t .

1We restrict to unconstrained minimization for sake of simplicity. One can extend
the discussion to constrained minimization by using ideas from Section 3.2.

5.1. Sum of a smooth and a simple non-smooth term 311

This improved convergence rate over a subgradient descent directly on
f + g comes at a price: in general (5.1) may be a difficult optimization
problem by itself, and this is why one needs to assume that g is simple.
For instance if g can be written as g(x) =

∑n
i=1 gi(x(i)) then one can

compute xt+1 by solving n convex problems in dimension 1. In the case
where g(x) = λ‖x‖1 this one-dimensional problem is given by:

min
x∈R

λ|x|+ 1
2η (x− x0)2, where x0 ∈ R.

Elementary computations shows that this problem has an analytical
solution given by τλη(x0), where τ is the shrinkage operator (hence the
name ISTA), defined by

τα(x) = (|x| − α)+sign(x).

Much more is known about (5.1) (which is called the proximal opera-
tor of g), and in fact entire monographs have been written about this
equation, see e.g. Parikh and Boyd [2013], Bach et al. [2012].

FISTA (Fast ISTA)

An obvious idea is to combine Nesterov’s accelerated gradient descent
(which results in a 1/t2 rate to optimize f) with ISTA. This results in
FISTA (Fast ISTA) which is described as follows. Let

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2 , and γt = 1− λt
λt+1

.

Let x1 = y1 an arbitrary initial point, and

yt+1 = argminx∈Rn g(x) + β

2 ‖x− (xt −
1
β
∇f(xt))‖22,

xt+1 = (1− γt)yt+1 + γtyt.

Again it is easy show that the rate of convergence of FISTA on f + g

is similar to the one of Nesterov’s accelerated gradient descent on f ,
more precisely:

f(yt) + g(yt)− (f(x∗) + g(x∗)) ≤ 2β‖x1 − x∗‖2

t2
.

312 Beyond the black-box model

CMD and RDA

ISTA and FISTA assume smoothness in the Euclidean metric. Quite
naturally one can also use these ideas in a non-Euclidean setting. Start-
ing from (4.5) one obtains the CMD (Composite Mirror Descent) al-
gorithm of Duchi et al. [2010], while with (4.6) one obtains the RDA
(Regularized Dual Averaging) of Xiao [2010]. We refer to these papers
for more details.

5.2 Smooth saddle-point representation of a non-smooth
function

Quite often the non-smoothness of a function f comes from a max op-
eration. More precisely non-smooth functions can often be represented
as

f(x) = max
1≤i≤m

fi(x), (5.2)

where the functions fi are smooth. This was the case for instance with
the function we used to prove the black-box lower bound 1/

√
t for non-

smooth optimization in Theorem 3.13. We will see now that by using
this structural representation one can in fact attain a rate of 1/t. This
was first observed in Nesterov [2004b] who proposed the Nesterov’s
smoothing technique. Here we will present the alternative method of
Nemirovski [2004a] which we find more transparent (yet another ver-
sion is the Chambolle-Pock algorithm, see Chambolle and Pock [2011]).
Most of what is described in this section can be found in Juditsky and
Nemirovski [2011a,b].

In the next subsection we introduce the more general problem of
saddle point computation. We then proceed to apply a modified version
of mirror descent to this problem, which will be useful both in Chapter
6 and also as a warm-up for the more powerful modified mirror prox
that we introduce next.

5.2.1 Saddle point computation

Let X ⊂ Rn, Y ⊂ Rm be compact and convex sets. Let ϕ : X × Y →
R be a continuous function, such that ϕ(·, y) is convex and ϕ(x, ·) is

5.2. Smooth saddle-point representation of a non-smooth function 313

concave. We write gX (x, y) (respectively gY(x, y)) for an element of
∂xϕ(x, y) (respectively ∂y(−ϕ(x, y))). We are interested in computing

min
x∈X

max
y∈Y

ϕ(x, y).

By Sion’s minimax theorem there exists a pair (x∗, y∗) ∈ X × Y such
that

ϕ(x∗, y∗) = min
x∈X

max
y∈Y

ϕ(x, y) = max
y∈Y

min
x∈X

ϕ(x, y).

We will explore algorithms that produce a candidate pair of solutions
(x̃, ỹ) ∈ X ×Y. The quality of (x̃, ỹ) is evaluated through the so-called
duality gap2

max
y∈Y

ϕ(x̃, y)−min
x∈X

ϕ(x, ỹ).

The key observation is that the duality gap can be controlled similarly
to the suboptimality gap f(x)− f(x∗) in a simple convex optimization
problem. Indeed for any (x, y) ∈ X × Y,

ϕ(x̃, ỹ)− ϕ(x, ỹ) ≤ gX (x̃, ỹ)>(x̃− x),

and
−ϕ(x̃, ỹ)− (−ϕ(x̃, y)) ≤ gY(x̃, ỹ)>(ỹ − y).

In particular, using the notation z = (x, y) ∈ Z := X × Y and g(z) =
(gX (x, y), gY(x, y)) we just proved

max
y∈Y

ϕ(x̃, y)−min
x∈X

ϕ(x, ỹ) ≤ g(z̃)>(z̃ − z), (5.3)

for some z ∈ Z. In view of the vector field point of view developed in
Section 4.6 this suggests to do a mirror descent in the Z-space with
the vector field g : Z → Rn × Rm.

We will assume in the next subsections that X is equipped with
a mirror map ΦX (defined on DX) which is 1-strongly convex w.r.t. a
norm ‖ · ‖X on X ∩DX . We denote R2

X = supx∈X Φ(x)−minx∈X Φ(x).
We define similar quantities for the space Y.

2Observe that the duality gap is the sum of the primal gap maxy∈Y ϕ(x̃, y) −
ϕ(x∗, y∗) and the dual gap ϕ(x∗, y∗)−minx∈X ϕ(x, ỹ).

314 Beyond the black-box model

5.2.2 Saddle Point Mirror Descent (SP-MD)

We consider here mirror descent on the space Z = X × Y with the
mirror map Φ(z) = aΦX (x) + bΦY(y) (defined on D = DX × DY),
where a, b ∈ R+ are to be defined later, and with the vector field
g : Z → Rn × Rm defined in the previous subsection. We call the
resulting algorithm SP-MD (Saddle Point Mirror Descent). It can be
described succintly as follows.

Let z1 ∈ argminz∈Z∩D Φ(z). Then for t ≥ 1, let

zt+1 ∈ argmin
z∈Z∩D

ηg>t z +DΦ(z, zt),

where gt = (gX ,t, gY,t) with gX ,t ∈ ∂xϕ(xt, yt) and gY,t ∈ ∂y(−ϕ(xt, yt)).

Theorem 5.1. Assume that ϕ(·, y) is LX -Lipschitz w.r.t. ‖ · ‖X , that
is ‖gX (x, y)‖∗X ≤ LX ,∀(x, y) ∈ X × Y. Similarly assume that ϕ(x, ·)
is LY -Lipschitz w.r.t. ‖ · ‖Y . Then SP-MD with a = LX

RX
, b = LY

RY
, and

η =
√

2
t satisfies

max
y∈Y

ϕ

(
1
t

t∑
s=1

xs, y

)
−min

x∈X
ϕ

(
x,

1
t

t∑
s=1

ys

)
≤ (RXLX +RYLY)

√
2
t
.

Proof. First we endow Z with the norm ‖ · ‖Z defined by

‖z‖Z =
√
a‖x‖2X + b‖y‖2Y .

It is immediate that Φ is 1-strongly convex with respect to ‖ · ‖Z on
Z ∩ D. Furthermore one can easily check that

‖z‖∗Z =
√

1
a

(‖x‖∗X)2 + 1
b

(
‖y‖∗Y

)2
,

and thus the vector field (gt) used in the SP-MD satisfies:

‖gt‖∗Z ≤

√
L2
X
a

+
L2
Y
b
.

Using (4.10) together with (5.3) and the values of a, b and η concludes
the proof.

5.2. Smooth saddle-point representation of a non-smooth function 315

5.2.3 Saddle Point Mirror Prox (SP-MP)

We now consider the most interesting situation in the context of this
chapter, where the function ϕ is smooth. Precisely we say that ϕ is
(β11, β12, β22, β21)-smooth if for any x, x′ ∈ X , y, y′ ∈ Y,

‖∇xϕ(x, y)−∇xϕ(x′, y)‖∗X ≤ β11‖x− x′‖X ,
‖∇xϕ(x, y)−∇xϕ(x, y′)‖∗X ≤ β12‖y − y′‖Y ,
‖∇yϕ(x, y)−∇yϕ(x, y′)‖∗Y ≤ β22‖y − y′‖Y ,
‖∇yϕ(x, y)−∇yϕ(x′, y)‖∗Y ≤ β21‖x− x′‖X ,

This will imply the Lipschitzness of the vector field g : Z → Rn × Rm

under the appropriate norm. Thus we use here mirror prox on the space
Z with the mirror map Φ(z) = aΦX (x) + bΦY(y) and the vector field
g. The resulting algorithm is called SP-MP (Saddle Point Mirror Prox)
and we can describe it succintly as follows.

Let z1 ∈ argminz∈Z∩D Φ(z). Then for t ≥ 1, let zt = (xt, yt) and
wt = (ut, vt) be defined by

wt+1 = argmin
z∈Z∩D

η(∇xϕ(xt, yt),−∇yϕ(xt, yt))>z +DΦ(z, zt)

zt+1 = argmin
z∈Z∩D

η(∇xϕ(ut+1, vt+1),−∇yϕ(ut+1, vt+1))>z +DΦ(z, zt).

Theorem 5.2. Assume that ϕ is (β11, β12, β22, β21)-smooth.
Then SP-MP with a = 1

R2
X
, b = 1

R2
Y
, and η =

1/
(
2 max

(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

))
satisfies

max
y∈Y

ϕ

(
1
t

t∑
s=1

us+1, y

)
−min

x∈X
ϕ

(
x,

1
t

t∑
s=1

vs+1

)

≤ max
(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

) 4
t
.

Proof. In light of the proof of Theorem 5.1 and (4.11) it clearly suf-
fices to show that the vector field g(z) = (∇xϕ(x, y),−∇yϕ(x, y))
is β-Lipschitz w.r.t. ‖z‖Z =

√
1
R2
X
‖x‖2X + 1

R2
Y
‖y‖2Y with β =

2 max
(
β11R

2
X , β22R

2
Y , β12RXRY , β21RXRY

)
. In other words one needs

to show that
‖g(z)− g(z′)‖∗Z ≤ β‖z − z′‖Z ,

316 Beyond the black-box model

which can be done with straightforward calculations (by introducing
g(x′, y) and using the definition of smoothness for ϕ).

5.2.4 Applications

We investigate briefly three applications for SP-MD and SP-MP.

Minimizing a maximum of smooth functions

The problem (5.2) (when f has to minimized over X) can be rewritten
as

min
x∈X

max
y∈∆m

~f(x)>y,

where ~f(x) = (f1(x), . . . , fm(x)) ∈ Rm. We assume that the functions
fi are L-Lipschtiz and β-smooth w.r.t. some norm ‖ · ‖X . Let us study
the smoothness of ϕ(x, y) = ~f(x)>y when X is equipped with ‖ · ‖X
and ∆m is equipped with ‖ · ‖1. On the one hand ∇yϕ(x, y) = ~f(x), in
particular one immediately has β22 = 0, and furthermore

‖~f(x)− ~f(x′)‖∞ ≤ L‖x− x′‖X ,

that is β21 = L. On the other hand ∇xϕ(x, y) =
∑m
i=1 yi∇fi(x), and

thus

‖
m∑
i=1

y(i)(∇fi(x)−∇fi(x′))‖∗X ≤ β‖x− x′‖X ,

‖
m∑
i=1

(y(i)− y′(i))∇fi(x)‖∗X ≤ L‖y − y′‖1,

that is β11 = β and β12 = L. Thus using SP-MP with some mirror
map on X and the negentropy on ∆m (see the “simplex setup" in Sec-
tion 4.3), one obtains an ε-optimal point of f(x) = max1≤i≤m fi(x) in
O

(
βR2
X+LRX

√
log(m)

ε

)
iterations. Furthermore an iteration of SP-MP

has a computational complexity of order of a step of mirror descent in
X on the function x 7→

∑m
i=1 y(i)fi(x) (plus O(m) for the update in

the Y-space).
Thus by using the structure of f we were able to obtain a much bet-

ter rate than black-box procedures (which would have required Ω(1/ε2)
iterations as f is potentially non-smooth).

5.2. Smooth saddle-point representation of a non-smooth function 317

Matrix games

Let A ∈ Rn×m, we denote ‖A‖max for the maximal entry (in abso-
lute value) of A, and Ai ∈ Rn for the ith column of A. We consider
the problem of computing a Nash equilibrium for the zero-sum game
corresponding to the loss matrix A, that is we want to solve

min
x∈∆n

max
y∈∆m

x>Ay.

Here we equip both ∆n and ∆m with ‖ · ‖1. Let ϕ(x, y) = x>Ay. Using
that ∇xϕ(x, y) = Ay and ∇yϕ(x, y) = A>x one immediately obtains
β11 = β22 = 0. Furthermore since

‖A(y − y′)‖∞ = ‖
m∑
i=1

(y(i)− y′(i))Ai‖∞ ≤ ‖A‖max‖y − y′‖1,

one also has β12 = β21 = ‖A‖max. Thus SP-MP with the ne-
gentropy on both ∆n and ∆m attains an ε-optimal pair of mixed
strategies with O

(
‖A‖max

√
log(n) log(m)/ε

)
iterations. Furthermore

the computational complexity of a step of SP-MP is dominated by
the matrix-vector multiplications which are O(nm). Thus overall the
complexity of getting an ε-optimal Nash equilibrium with SP-MP is
O
(
‖A‖maxnm

√
log(n) log(m)/ε

)
.

Linear classification

Let (`i, Ai) ∈ {−1, 1} × Rn, i ∈ [m], be a data set that one wishes to
separate with a linear classifier. That is one is looking for x ∈ B2,n such
that for all i ∈ [m], sign(x>Ai) = sign(`i), or equivalently `ix>Ai > 0.
Clearly without loss of generality one can assume `i = 1 for all i ∈ [m]
(simply replace Ai by `iAi). Let A ∈ Rn×m be the matrix where the
ith column is Ai. The problem of finding x with maximal margin can
be written as

max
x∈B2,n

min
1≤i≤m

A>i x = max
x∈B2,n

min
y∈∆m

x>Ay. (5.4)

Assuming that ‖Ai‖2 ≤ B, and using the calculations we did in Section
5.2.4, it is clear that ϕ(x, y) = x>Ay is (0, B, 0, B)-smooth with respect

318 Beyond the black-box model

to ‖ · ‖2 on B2,n and ‖ · ‖1 on ∆m. This implies in particular that SP-
MP with the Euclidean norm squared on B2,n and the negentropy on
∆m will solve (5.4) in O(B

√
log(m)/ε) iterations. Again the cost of

an iteration is dominated by the matrix-vector multiplications, which
results in an overall complexity of O(Bnm

√
log(m)/ε) to find an ε-

optimal solution to (5.4).

5.3 Interior point methods

We describe here interior point methods (IPM), a class of algorithms
fundamentally different from what we have seen so far. The first
algorithm of this type was described in Karmarkar [1984], but the
theory we shall present was developed in Nesterov and Nemirovski
[1994]. We follow closely the presentation given in [Chapter 4, Nesterov
[2004a]]. Other useful references (in particular for the primal-dual
IPM, which are the ones used in practice) include Renegar [2001],
Nemirovski [2004b], Nocedal and Wright [2006].

IPM are designed to solve convex optimization problems of the form

min. c>x
s.t. x ∈ X ,

with c ∈ Rn, and X ⊂ Rn convex and compact. Note that, at this
point, the linearity of the objective is without loss of generality as
minimizing a convex function f over X is equivalent to minimizing a
linear objective over the epigraph of f (which is also a convex set). The
structural assumption on X that one makes in IPM is that there exists
a self-concordant barrier for X with an easily computable gradient and
Hessian. The meaning of the previous sentence will be made precise in
the next subsections. The importance of IPM stems from the fact that
LPs and SDPs (see Section 1.5) satisfy this structural assumption.

5.3.1 The barrier method

We say that F : int(X)→ R is a barrier for X if

F (x) −−−−→
x→∂X

+∞.

5.3. Interior point methods 319

We will only consider strictly convex barriers. We extend the domain
of definition of F to Rn with F (x) = +∞ for x 6∈ int(X). For t ∈ R+
let

x∗(t) ∈ argmin
x∈Rn

tc>x+ F (x).

In the following we denote Ft(x) := tc>x + F (x). In IPM the path
(x∗(t))t∈R+ is referred to as the central path. It seems clear that the
central path eventually leads to the minimum x∗ of the objective func-
tion c>x on X , precisely we will have

x∗(t) −−−−→
t→+∞

x∗.

The idea of the barrier method is to move along the central path by
“boosting" a fast locally convergent algorithm, which we denote for
the moment by A, using the following scheme: Assume that one has
computed x∗(t), then one uses A initialized at x∗(t) to compute x∗(t′)
for some t′ > t. There is a clear tension for the choice of t′, on the one
hand t′ should be large in order to make as much progress as possible on
the central path, but on the other hand x∗(t) needs to be close enough
to x∗(t′) so that it is in the basin of fast convergence for A when run
on Ft′ .

IPM follows the above methodology with A being Newton’s method.
Indeed as we will see in the next subsection, Newton’s method has a
quadratic convergence rate, in the sense that if initialized close enough
to the optimum it attains an ε-optimal point in log log(1/ε) iterations!
Thus we now have a clear plan to make these ideas formal and analyze
the iteration complexity of IPM:

1. First we need to describe precisely the region of fast convergence
for Newton’s method. This will lead us to define self-concordant
functions, which are “natural" functions for Newton’s method.

2. Then we need to evaluate precisely how much larger t′ can be
compared to t, so that x∗(t) is still in the region of fast conver-
gence of Newton’s method when optimizing the function Ft′ with
t′ > t. This will lead us to define ν-self concordant barriers.

320 Beyond the black-box model

3. How do we get close to the central path in the first place? Is
it possible to compute x∗(0) = argminx∈Rn F (x) (the so-called
analytical center of X)?

5.3.2 Traditional analysis of Newton’s method

We start by describing Newton’s method together with its standard
analysis showing the quadratic convergence rate when initialized close
enough to the optimum. In this subsection we denote ‖ · ‖ for both the
Euclidean norm on Rn and the operator norm on matrices (in particular
‖Ax‖ ≤ ‖A‖ · ‖x‖).

Let f : Rn → R be a C2 function. Using a Taylor’s expansion of f
around x one obtains

f(x+ h) = f(x) + h>∇f(x) + 1
2h
>∇2f(x)h+ o(‖h‖2).

Thus, starting at x, in order to minimize f it seems natural to move in
the direction h that minimizes

h>∇f(x) + 1
2h
>∇f2(x)h.

If ∇2f(x) is positive definite then the solution to this problem is given
by h = −[∇2f(x)]−1∇f(x). Newton’s method simply iterates this idea:
starting at some point x0 ∈ Rn, it iterates for k ≥ 0 the following
equation:

xk+1 = xk − [∇2f(xk)]−1∇f(xk).
While this method can have an arbitrarily bad behavior in general, if
started close enough to a strict local minimum of f , it can have a very
fast convergence:

Theorem 5.3. Assume that f has a Lipschitz Hessian, that is
‖∇2f(x) −∇2f(y)‖ ≤ M‖x − y‖. Let x∗ be local minimum of f with
strictly positive Hessian, that is ∇2f(x∗) � µIn, µ > 0. Suppose that
the initial starting point x0 of Newton’s method is such that

‖x0 − x∗‖ ≤
µ

2M .

Then Newton’s method is well-defined and converges to x∗ at a
quadratic rate:

‖xk+1 − x∗‖ ≤
M

µ
‖xk − x∗‖2.

5.3. Interior point methods 321

Proof. We use the following simple formula, for x, h ∈ Rn,∫ 1

0
∇2f(x+ sh) h ds = ∇f(x+ h)−∇f(x).

Now note that ∇f(x∗) = 0, and thus with the above formula one
obtains

∇f(xk) =
∫ 1

0
∇2f(x∗ + s(xk − x∗)) (xk − x∗) ds,

which allows us to write:

xk+1 − x∗

= xk − x∗ − [∇2f(xk)]−1∇f(xk)

= xk − x∗ − [∇2f(xk)]−1
∫ 1

0
∇2f(x∗ + s(xk − x∗)) (xk − x∗) ds

= [∇2f(xk)]−1
∫ 1

0
[∇2f(xk)−∇2f(x∗ + s(xk − x∗))] (xk − x∗) ds.

In particular one has

‖xk+1 − x∗‖
≤ ‖[∇2f(xk)]−1‖

×
(∫ 1

0
‖∇2f(xk)−∇2f(x∗ + s(xk − x∗))‖ ds

)
‖xk − x∗‖.

Using the Lipschitz property of the Hessian one immediately obtains
that(∫ 1

0
‖∇2f(xk)−∇2f(x∗ + s(xk − x∗))‖ ds

)
≤ M

2 ‖xk − x
∗‖.

Using again the Lipschitz property of the Hessian (note that ‖A−B‖ ≤
s ⇔ sIn � A − B � −sIn), the hypothesis on x∗, and an induction
hypothesis that ‖xk − x∗‖ ≤ µ

2M , one has

∇2f(xk) � ∇2f(x∗)−M‖xk − x∗‖In � (µ−M‖xk − x∗‖)In �
µ

2 In,

which concludes the proof.

322 Beyond the black-box model

5.3.3 Self-concordant functions

Before giving the definition of self-concordant functions let us try to
get some insight into the “geometry" of Newton’s method. Let A be a
n× n non-singular matrix. We look at a Newton step on the functions
f : x 7→ f(x) and ϕ : y 7→ f(A−1y), starting respectively from x and
y = Ax, that is:

x+ = x− [∇2f(x)]−1∇f(x), and y+ = y − [∇2ϕ(y)]−1∇ϕ(y).

By using the following simple formulas

∇(x 7→ f(Ax)) = A>∇f(Ax), and ∇2(x 7→ f(Ax)) = A>∇2f(Ax)A.

it is easy to show that
y+ = Ax+.

In other words Newton’s method will follow the same trajectory in the
“x-space" and in the “y-space" (the image through A of the x-space),
that is Newton’s method is affine invariant. Observe that this property
is not shared by the methods described in Chapter 3 (except for the
conditional gradient descent).

The affine invariance of Newton’s method casts some concerns on
the assumptions of the analysis in Section 5.3.2. Indeed the assumptions
are all in terms of the canonical inner product in Rn. However we just
showed that the method itself does not depend on the choice of the
inner product (again this is not true for first order methods). Thus
one would like to derive a result similar to Theorem 5.3 without any
reference to a prespecified inner product. The idea of self-concordance
is to modify the Lipschitz assumption on the Hessian to achieve this
goal.

Assume from now on that f is C3, and let ∇3f(x) : Rn×Rn×Rn →
R be the third order differential operator. The Lipschitz assumption on
the Hessian in Theorem 5.3 can be written as:

∇3f(x)[h, h, h] ≤M‖h‖32.

The issue is that this inequality depends on the choice of an inner prod-
uct. More importantly it is easy to see that a convex function which

5.3. Interior point methods 323

goes to infinity on a compact set simply cannot satisfy the above in-
equality. A natural idea to try fix these issues is to replace the Euclidean
metric on the right hand side by the metric given by the function f

itself at x, that is:
‖h‖x =

√
h>∇2f(x)h.

Observe that to be clear one should rather use the notation ‖ ·‖x,f , but
since f will always be clear from the context we stick to ‖ · ‖x.

Definition 5.1. Let X be a convex set with non-empty interior, and
f a C3 convex function defined on int(X). Then f is self-concordant
(with constant M) if for all x ∈ int(X), h ∈ Rn,

∇3f(x)[h, h, h] ≤M‖h‖3x.

We say that f is standard self-concordant if f is self-concordant with
constant M = 2.

An easy consequence of the definition is that a self-concordant func-
tion is a barrier for the set X , see [Theorem 4.1.4, Nesterov [2004a]].
The main example to keep in mind of a standard self-concordant func-
tion is f(x) = − log x for x > 0. The next definition will be key in order
to describe the region of quadratic convergence for Newton’s method
on self-concordant functions.

Definition 5.2. Let f be a standard self-concordant function on X . For
x ∈ int(X), we say that λf (x) = ‖∇f(x)‖∗x is the Newton decrement of
f at x.

An important inequality is that for x such that λf (x) < 1, and
x∗ = argmin f(x), one has

‖x− x∗‖x ≤
λf (x)

1− λf (x) , (5.5)

see [Equation 4.1.18, Nesterov [2004a]]. We state the next theorem
without a proof, see also [Theorem 4.1.14, Nesterov [2004a]].

Theorem 5.4. Let f be a standard self-concordant function on X , and
x ∈ int(X) such that λf (x) ≤ 1/4, then

λf
(
x− [∇2f(x)]−1∇f(x)

)
≤ 2λf (x)2.

324 Beyond the black-box model

In other words the above theorem states that, if initialized at
a point x0 such that λf (x0) ≤ 1/4, then Newton’s iterates satisfy
λf (xk+1) ≤ 2λf (xk)2. Thus, Newton’s region of quadratic convergence
for self-concordant functions can be described as a “Newton decrement
ball" {x : λf (x) ≤ 1/4}. In particular by taking the barrier to be a
self-concordant function we have now resolved Step (1) of the plan
described in Section 5.3.1.

5.3.4 ν-self-concordant barriers

We deal here with Step (2) of the plan described in Section 5.3.1. Given
Theorem 5.4 we want t′ to be as large as possible and such that

λFt′ (x
∗(t)) ≤ 1/4. (5.6)

Since the Hessian of Ft′ is the Hessian of F , one has

λFt′ (x
∗(t)) = ‖t′c+∇F (x∗(t))‖∗x∗(t).

Observe that, by first order optimality, one has tc + ∇F (x∗(t)) = 0,
which yields

λFt′ (x
∗(t)) = (t′ − t)‖c‖∗x∗(t). (5.7)

Thus taking

t′ = t+ 1
4‖c‖∗x∗(t)

(5.8)

immediately yields (5.6). In particular with the value of t′ given in
(5.8) the Newton’s method on Ft′ initialized at x∗(t) will converge
quadratically fast to x∗(t′).

It remains to verify that by iterating (5.8) one obtains a sequence
diverging to infinity, and to estimate the rate of growth. Thus one needs
to control ‖c‖∗x∗(t) = 1

t ‖∇F (x∗(t))‖∗x∗(t). Luckily there is a natural class
of functions for which one can control ‖∇F (x)‖∗x uniformly over x. This
is the set of functions such that

∇2F (x) � 1
ν
∇F (x)[∇F (x)]>. (5.9)

5.3. Interior point methods 325

Indeed in that case one has:

‖∇F (x)‖∗x = sup
h:h>∇F 2(x)h≤1

∇F (x)>h

≤ sup
h:h>(1

ν
∇F (x)[∇F (x)]>)h≤1

∇F (x)>h

=
√
ν.

Thus a safe choice to increase the penalization parameter is t′ =(
1 + 1

4
√
ν

)
t. Note that the condition (5.9) can also be written as the

fact that the function F is 1
ν -exp-concave, that is x 7→ exp(− 1

νF (x)) is
concave. We arrive at the following definition.

Definition 5.3. F is a ν-self-concordant barrier if it is a standard self-
concordant function, and it is 1

ν -exp-concave.

Again the canonical example is the logarithmic function, x 7→
− log x, which is a 1-self-concordant barrier for the set R+. We state
the next theorem without a proof (see Bubeck and Eldan [2014] for
more on this result).

Theorem 5.5. Let X ⊂ Rn be a closed convex set with non-empty
interior. There exists F which is a (c n)-self-concordant barrier for X
(where c is some universal constant).

A key property of ν-self-concordant barriers is the following inequal-
ity:

c>x∗(t)−min
x∈X

c>x ≤ ν

t
, (5.10)

see [Equation (4.2.17), Nesterov [2004a]]. More generally using (5.10)
together with (5.5) one obtains

c>y −min
x∈X

c>x ≤ ν

t
+ c>(y − x∗(t))

= ν

t
+ 1
t
(∇Ft(y)−∇F (y))>(y − x∗(t))

≤ ν

t
+ 1
t
‖∇Ft(y)−∇F (y)‖∗y · ‖y − x∗(t)‖y

≤ ν

t
+ 1
t
(λFt(y) +

√
ν) λFt(y)

1− λFt(y) (5.11)

326 Beyond the black-box model

In the next section we describe a precise algorithm based on the ideas
we developed above. As we will see one cannot ensure to be exactly on
the central path, and thus it is useful to generalize the identity (5.7)
for a point x close to the central path. We do this as follows:

λFt′ (x) = ‖t′c+∇F (x)‖∗x
= ‖(t′/t)(tc+∇F (x)) + (1− t′/t)∇F (x)‖∗x

≤ t′

t
λFt(x) +

(
t′

t
− 1

)√
ν. (5.12)

5.3.5 Path-following scheme

We can now formally describe and analyze the most basic IPM called
the path-following scheme. Let F be ν-self-concordant barrier for X .
Assume that one can find x0 such that λFt0 (x0) ≤ 1/4 for some small
value t0 > 0 (we describe a method to find x0 at the end of this sub-
section). Then for k ≥ 0, let

tk+1 =
(

1 + 1
13
√
ν

)
tk,

xk+1 = xk − [∇2F (xk)]−1(tk+1c+∇F (xk)).

The next theorem shows that after O
(√

ν log ν
t0ε

)
iterations of the

path-following scheme one obtains an ε-optimal point.

Theorem 5.6. The path-following scheme described above satisfies

c>xk −min
x∈X

c>x ≤ 2ν
t0

exp
(
− k

1 + 13
√
ν

)
.

Proof. We show that the iterates (xk)k≥0 remain close to the central
path (x∗(tk))k≥0. Precisely one can easily prove by induction that

λFtk (xk) ≤ 1/4.

Indeed using Theorem 5.4 and equation (5.12) one immediately obtains

λFtk+1
(xk+1) ≤ 2λFtk+1

(xk)2

≤ 2
(
tk+1
tk

λFtk (xk) +
(
tk+1
tk
− 1

)√
ν

)2

≤ 1/4,

5.3. Interior point methods 327

where we used in the last inequality that tk+1/tk = 1+ 1
13
√
ν
and ν ≥ 1.

Thus using (5.11) one obtains

c>xk −min
x∈X

c>x ≤ ν +
√
ν/3 + 1/12
tk

≤ 2ν
tk
.

Observe that tk =
(
1 + 1

13
√
ν

)k
t0, which finally yields

c>xk −min
x∈X

c>x ≤ 2ν
t0

(
1 + 1

13
√
ν

)−k
.

At this point we still need to explain how one can get close to
an intial point x∗(t0) of the central path. This can be done with the
following rather clever trick. Assume that one has some point y0 ∈ X .
The observation is that y0 is on the central path at t = 1 for the problem
where c is replaced by −∇F (y0). Now instead of following this central
path as t→ +∞, one follows it as t→ 0. Indeed for t small enough the
central paths for c and for −∇F (y0) will be very close. Thus we iterate
the following equations, starting with t′0 = 1,

t′k+1 =
(

1− 1
13
√
ν

)
t′k,

yk+1 = yk − [∇2F (yk)]−1(−t′k+1∇F (y0) +∇F (yk)).

A straightforward analysis shows that for k = O(
√
ν log ν), which corre-

sponds to t′k = 1/νO(1), one obtains a point yk such that λFt′
k

(yk) ≤ 1/4.
In other words one can initialize the path-following scheme with t0 = t′k
and x0 = yk.

5.3.6 IPMs for LPs and SDPs

We have seen that, roughly, the complexity of interior point methods
with a ν-self-concordant barrier is O

(
M
√
ν log ν

ε

)
, whereM is the com-

plexity of computing a Newton direction (which can be done by com-
puting and inverting the Hessian of the barrier). Thus the efficiency of
the method is directly related to the form of the self-concordant bar-
rier that one can construct for X . It turns out that for LPs and SDPs

328 Beyond the black-box model

one has particularly nice self-concordant barriers. Indeed one can show
that F (x) = −

∑n
i=1 log xi is an n-self-concordant barrier on Rn+, and

F (x) = − log det(X) is an n-self-concordant barrier on Sn+. See also Lee
and Sidford [2013] for a recent improvement of the basic logarithmic
barrier for LPs.

There is one important issue that we overlooked so far. In most in-
teresting cases LPs and SDPs come with equality constraints, resulting
in a set of constraints X with empty interior. From a theoretical point
of view there is an easy fix, which is to reparametrize the problem as
to enforce the variables to live in the subspace spanned by X . This
modification also has algorithmic consequences, as the evaluation of
the Newton direction will now be different. In fact, rather than doing
a reparametrization, one can simply search for Newton directions such
that the updated point will stay in X . In other words one has now to
solve a convex quadratic optimization problem under linear equality
constraints. Luckily using Lagrange multipliers one can find a closed
form solution to this problem, and we refer to previous references for
more details.

6

Convex optimization and randomness

In this chapter we explore the interplay between optimization and ran-
domness. A key insight, going back to Robbins and Monro [1951], is
that first order methods are quite robust: the gradients do not have
to be computed exactly to ensure progress towards the optimum. In-
deed since these methods usually do many small steps, as long as the
gradients are correct on average, the error introduced by the gradient
approximations will eventually vanish. As we will see below this intu-
ition is correct for non-smooth optimization (since the steps are indeed
small) but the picture is more subtle in the case of smooth optimization
(recall from Chapter 3 that in this case we take long steps).

We introduce now the main object of this chapter: a (first order)
stochastic oracle for a convex function f : X → R takes as input a point
x ∈ X and outputs a random variable g̃(x) such that E g̃(x) ∈ ∂f(x).
In the case where the query point x is a random variable (possi-
bly obtained from previous queries to the oracle), one assumes that
E (g̃(x)|x) ∈ ∂f(x).

The unbiasedness assumption by itself is not enough to obtain rates
of convergence, one also needs to make assumptions about the fluc-
tuations of g̃(x). Essentially in the non-smooth case we will assume

329

330 Convex optimization and randomness

that there exists B > 0 such that E‖g̃(x)‖2∗ ≤ B2 for all x ∈ X ,
while in the smooth case we assume that there exists σ > 0 such that
E‖g̃(x)−∇f(x)‖2∗ ≤ σ2 for all x ∈ X .

We also note that the situation with a biased oracle is quite different,
and we refer to d’Aspremont [2008], Schmidt et al. [2011] for some works
in this direction.

The two canonical examples of a stochastic oracle in machine learn-
ing are as follows.

Let f(x) = Eξ`(x, ξ) where `(x, ξ) should be interpreted as the loss
of predictor x on the example ξ. We assume that `(·, ξ) is a (differen-
tiable1) convex function for any ξ. The goal is to find a predictor with
minimal expected loss, that is to minimize f . When queried at x the
stochastic oracle can draw ξ from the unknown distribution and report
∇x`(x, ξ). One obviously has Eξ∇x`(x, ξ) ∈ ∂f(x).

The second example is the one described in Section 1.1, where one
wants to minimize f(x) = 1

m

∑m
i=1 fi(x). In this situation a stochastic

oracle can be obtained by selecting uniformly at random I ∈ [m] and
reporting ∇fI(x).

Observe that the stochastic oracles in the two above cases are quite
different. Consider the standard situation where one has access to a
data set of i.i.d. samples ξ1, . . . , ξm. Thus in the first case, where one
wants to minimize the expected loss, one is limited to m queries to the
oracle, that is to a single pass over the data (indeed one cannot ensure
that the conditional expectations are correct if one uses twice a data
point). On the contrary for the empirical loss where fi(x) = `(x, ξi)
one can do as many passes as one wishes.

6.1 Non-smooth stochastic optimization

We initiate our study with stochastic mirror descent (S-MD) which is
defined as follows: x1 ∈ argminX∩D Φ(x), and

xt+1 = argmin
x∈X∩D

ηg̃(xt)>x+DΦ(x, xt).

1We assume differentiability only for sake of notation here.

6.1. Non-smooth stochastic optimization 331

In this case equation (4.10) rewrites
t∑

s=1
g̃(xs)>(xs − x) ≤ R2

η
+ η

2ρ

t∑
s=1
‖g̃(xs)‖2∗.

This immediately yields a rate of convergence thanks to the following
simple observation based on the tower rule:

Ef
(1
t

t∑
s=1

xs

)
− f(x) ≤ 1

t
E

t∑
s=1

(f(xs)− f(x))

≤ 1
t
E

t∑
s=1

E(g̃(xs)|xs)>(xs − x)

= 1
t
E

t∑
s=1

g̃(xs)>(xs − x).

We just proved the following theorem.

Theorem 6.1. Let Φ be a mirror map 1-strongly convex on X ∩ D
with respect to ‖ · ‖, and let R2 = supx∈X∩D Φ(x) − Φ(x1). Let f be
convex. Furthermore assume that the stochastic oracle is such that
E‖g̃(x)‖2∗ ≤ B2. Then S-MD with η = R

B

√
2
t satisfies

Ef
(1
t

t∑
s=1

xs

)
−min

x∈X
f(x) ≤ RB

√
2
t
.

Similarly, in the Euclidean and strongly convex case, one can di-
rectly generalize Theorem 3.9. Precisely we consider stochastic gradient
descent (SGD), that is S-MD with Φ(x) = 1

2‖x‖
2
2, with time-varying

step size (ηt)t≥1, that is

xt+1 = ΠX (xt − ηtg̃(xt)).

Theorem 6.2. Let f be α-strongly convex, and assume that the
stochastic oracle is such that E‖g̃(x)‖2∗ ≤ B2. Then SGD with ηs =

2
α(s+1) satisfies

f

(
t∑

s=1

2s
t(t+ 1)xs

)
− f(x∗) ≤ 2B2

α(t+ 1) .

332 Convex optimization and randomness

6.2 Smooth stochastic optimization and mini-batch SGD

In the previous section we showed that, for non-smooth optimization,
there is basically no cost for having a stochastic oracle instead of an
exact oracle. Unfortunately one can show (see e.g. Tsybakov [2003])
that smoothness does not bring any acceleration for a general stochastic
oracle2. This is in sharp contrast with the exact oracle case where we
showed that gradient descent attains a 1/t rate (instead of 1/

√
t for non-

smooth), and this could even be improved to 1/t2 thanks to Nesterov’s
accelerated gradient descent.

The next result interpolates between the 1/
√
t for stochastic smooth

optimization, and the 1/t for deterministic smooth optimization. We
will use it to propose a useful modification of SGD in the smooth case.
The proof is extracted from Dekel et al. [2012].

Theorem 6.3. Let Φ be a mirror map 1-strongly convex on X ∩ D
w.r.t. ‖ · ‖, and let R2 = supx∈X∩D Φ(x)−Φ(x1). Let f be convex and
β-smooth w.r.t. ‖ · ‖. Furthermore assume that the stochastic oracle is
such that E‖∇f(x)− g̃(x)‖2∗ ≤ σ2. Then S-MD with stepsize 1

β+1/η and

η = R
σ

√
2
t satisfies

Ef
(1
t

t∑
s=1

xs+1

)
− f(x∗) ≤ Rσ

√
2
t

+ βR2

t
.

Proof. Using β-smoothness, Cauchy-Schwarz (with 2ab ≤ xa2 + b2/x

2While being true in general this statement does not say anything about spe-
cific functions/oracles. For example it was shown in Bach and Moulines [2013] that
acceleration can be obtained for the square loss and the logistic loss.

6.2. Smooth stochastic optimization and mini-batch SGD 333

for any x > 0), and the 1-strong convexity of Φ, one obtains

f(xs+1)− f(xs)

≤ ∇f(xs)>(xs+1 − xs) + β

2 ‖xs+1 − xs‖2

= g̃>s (xs+1 − xs) + (∇f(xs)− g̃s)>(xs+1 − xs) + β

2 ‖xs+1 − xs‖2

≤ g̃>s (xs+1 − xs) + η

2‖∇f(xs)− g̃s‖2∗ + 1
2(β + 1/η)‖xs+1 − xs‖2

≤ g̃>s (xs+1 − xs) + η

2‖∇f(xs)− g̃s‖2∗ + (β + 1/η)DΦ(xs+1, xs).

Observe that, using the same argument as to derive (4.9), one has

1
β + 1/η g̃

>
s (xs+1 − x∗) ≤ DΦ(x∗, xs)−DΦ(x∗, xs+1)−DΦ(xs+1, xs).

Thus

f(xs+1)
≤ f(xs) + g̃>s (x∗ − xs) + (β + 1/η) (DΦ(x∗, xs)−DΦ(x∗, xs+1))

+ η

2‖∇f(xs)− g̃s‖2∗

≤ f(x∗) + (g̃s −∇f(xs))>(x∗ − xs)

+ (β + 1/η) (DΦ(x∗, xs)−DΦ(x∗, xs+1)) + η

2‖∇f(xs)− g̃s‖2∗.

In particular this yields

Ef(xs+1)− f(x∗) ≤ (β + 1/η)E (DΦ(x∗, xs)−DΦ(x∗, xs+1)) + ησ2

2 .

By summing this inequality from s = 1 to s = t one can easily conclude
with the standard argument.

We can now propose the following modification of SGD based on
the idea of mini-batches. Let m ∈ N, then mini-batch SGD iterates the
following equation:

xt+1 = ΠX

(
xt −

η

m

m∑
i=1

g̃i(xt)
)
.

334 Convex optimization and randomness

where g̃i(xt), i = 1, . . . ,m are independent random variables (condi-
tionally on xt) obtained from repeated queries to the stochastic oracle.
Assuming that f is β-smooth and that the stochastic oracle is such that
‖g̃(x)‖2 ≤ B, one can obtain a rate of convergence for mini-batch SGD
with Theorem 6.3. Indeed one can apply this result with the modified
stochastic oracle that returns 1

m

∑m
i=1 g̃i(x), it satisfies

E‖ 1
m

m∑
i=1

g̃i(x)−∇f(x)‖22 = 1
m
E‖g̃1(x)−∇f(x)‖22 ≤

2B2

m
.

Thus one obtains that with t calls to the (original) stochastic oracle,
that is t/m iterations of the mini-batch SGD, one has a suboptimality
gap bounded by

R

√
2B2

m

√
2
t/m

+ βR2

t/m
= 2RB√

t
+ mβR2

t
.

Thus as long as m ≤ B
Rβ

√
t one obtains, with mini-batch SGD and t

calls to the oracle, a point which is 3RB√
t
-optimal.

Mini-batch SGD can be a better option than basic SGD in at least
two situations: (i) When the computation for an iteration of mini-
batch SGD can be distributed between multiple processors. Indeed a
central unit can send the message to the processors that estimates of
the gradient at point xs have to be computed, then each processor can
work independently and send back the estimate they obtained. (ii) Even
in a serial setting mini-batch SGD can sometimes be advantageous,
in particular if some calculations can be re-used to compute several
estimated gradients at the same point.

6.3 Sum of smooth and strongly convex functions

Let us examine in more details the main example from Section 1.1.
That is one is interested in the unconstrained minimization of

f(x) = 1
m

m∑
i=1

fi(x),

where f1, . . . , fm are β-smooth and convex functions, and f is α-
strongly convex. Typically in machine learning α can be as small as

6.3. Sum of smooth and strongly convex functions 335

1/m, while β is of order of a constant. In other words the condition
number κ = β/α can be as large as Ω(m). Let us now compare the
basic gradient descent, that is

xt+1 = xt −
η

m

m∑
i=1
∇fi(x),

to SGD
xt+1 = xt − η∇fit(x),

where it is drawn uniformly at random in [m] (independently of ev-
erything else). Theorem 3.10 shows that gradient descent requires
O(mκ log(1/ε)) gradient computations (which can be improved to
O(m

√
κ log(1/ε)) with Nesterov’s accelerated gradient descent), while

Theorem 6.2 shows that SGD (with appropriate averaging) requires
O(1/(αε)) gradient computations. Thus one can obtain a low accu-
racy solution reasonably fast with SGD, but for high accuracy the
basic gradient descent is more suitable. Can we get the best of both
worlds? This question was answered positively in Le Roux et al. [2012]
with SAG (Stochastic Averaged Gradient) and in Shalev-Shwartz and
Zhang [2013a] with SDCA (Stochastic Dual Coordinate Ascent). These
methods require only O((m + κ) log(1/ε)) gradient computations. We
describe below the SVRG (Stochastic Variance Reduced Gradient de-
scent) algorithm from Johnson and Zhang [2013] which makes the main
ideas of SAG and SDCA more transparent (see also Defazio et al.
[2014] for more on the relation between these different methods). We
also observe that a natural question is whether one can obtain a Nes-
terov’s accelerated version of these algorithms that would need only
O((m+

√
mκ) log(1/ε)), see Shalev-Shwartz and Zhang [2013b], Zhang

and Xiao [2014], Agarwal and Bottou [2014] for recent works on this
question.

To obtain a linear rate of convergence one needs to make “big steps",
that is the step-size should be of order of a constant. In SGD the step-
size is typically of order 1/

√
t because of the variance introduced by

the stochastic oracle. The idea of SVRG is to “center" the output of
the stochastic oracle in order to reduce the variance. Precisely instead
of feeding ∇fi(x) into the gradient descent one would use ∇fi(x) −

336 Convex optimization and randomness

∇fi(y) +∇f(y) where y is a centering sequence. This is a sensible idea
since, when x and y are close to the optimum, one should have that
∇fi(x) − ∇fi(y) will have a small variance, and of course ∇f(y) will
also be small (note that ∇fi(x) by itself is not necessarily small). This
intuition is made formal with the following lemma.

Lemma 6.4. Let f1, . . . fm be β-smooth convex functions on Rn, and i
be a random variable uniformly distributed in [m]. Then

E‖∇fi(x)−∇fi(x∗)‖22 ≤ 2β(f(x)− f(x∗)).

Proof. Let gi(x) = fi(x)− fi(x∗)−∇fi(x∗)>(x− x∗). By convexity of
fi one has gi(x) ≥ 0 for any x and in particular using (3.5) this yields
−gi(x) ≤ − 1

2β‖∇gi(x)‖22 which can be equivalently written as

‖∇fi(x)−∇fi(x∗)‖22 ≤ 2β(fi(x)− fi(x∗)−∇fi(x∗)>(x− x∗)).

Taking expectation with respect to i and observing that E∇fi(x∗) =
∇f(x∗) = 0 yields the claimed bound.

On the other hand the computation of ∇f(y) is expensive (it re-
quires m gradient computations), and thus the centering sequence
should be updated more rarely than the main sequence. These ideas
lead to the following epoch-based algorithm.

Let y(1) ∈ Rn be an arbitrary initial point. For s = 1, 2 . . ., let
x

(s)
1 = y(s). For t = 1, . . . , k let

x
(s)
t+1 = x

(s)
t − η

(
∇f

i
(s)
t

(x(s)
t)−∇f

i
(s)
t

(y(s)) +∇f(y(s))
)
,

where i(s)t is drawn uniformly at random (and independently of every-
thing else) in [m]. Also let

y(s+1) = 1
k

k∑
t=1

x
(s)
t .

Theorem 6.5. Let f1, . . . fm be β-smooth convex functions on Rn and
f be α-strongly convex. Then SVRG with η = 1

10β and k = 20κ satisfies

Ef(y(s+1))− f(x∗) ≤ 0.9s(f(y(1))− f(x∗)).

6.3. Sum of smooth and strongly convex functions 337

Proof. We fix a phase s ≥ 1 and we denote by E the expectation taken
with respect to i(s)1 , . . . , i

(s)
k . We show below that

Ef(y(s+1))− f(x∗) = Ef
(

1
k

k∑
t=1

x
(s)
t

)
− f(x∗) ≤ 0.9(f(y(s))− f(x∗)),

which clearly implies the theorem. To simplify the notation in the fol-
lowing we drop the dependency on s, that is we want to show that

Ef
(

1
k

k∑
t=1

xt

)
− f(x∗) ≤ 0.9(f(y)− f(x∗)). (6.1)

We start as for the proof of Theorem 3.10 (analysis of gradient descent
for smooth and strongly convex functions) with

‖xt+1 − x∗‖22 = ‖xt − x∗‖22 − 2ηv>t (xt − x∗) + η2‖vt‖22, (6.2)

where
vt = ∇fit(xt)−∇fit(y) +∇f(y).

Using Lemma 6.4, we upper bound Eit‖vt‖22 as follows (also recall that
E‖X − E(X)‖22 ≤ E‖X‖22, and Eit∇fit(x∗) = 0):

Eit‖vt‖22
≤ 2Eit‖∇fit(xt)−∇fit(x∗)‖22 + 2Eit‖∇fit(y)−∇fit(x∗)−∇f(y)‖22
≤ 2Eit‖∇fit(xt)−∇fit(x∗)‖22 + 2Eit‖∇fit(y)−∇fit(x∗)‖22
≤ 4β(f(xt)− f(x∗) + f(y)− f(x∗)). (6.3)

Also observe that

Eitv>t (xt − x∗) = ∇f(xt)>(xt − x∗) ≥ f(xt)− f(x∗),

and thus plugging this into (6.2) together with (6.3) one obtains

Eit‖xt+1 − x∗‖22 ≤ ‖xt − x∗‖22 − 2η(1− 2βη)(f(xt)− f(x∗))
+4βη2(f(y)− f(x∗)).

Summing the above inequality over t = 1, . . . , k yields

E‖xk+1 − x∗‖22 ≤ ‖x1 − x∗‖22 − 2η(1− 2βη)E
k∑
t=1

(f(xt)− f(x∗))

+4βη2k(f(y)− f(x∗)).

338 Convex optimization and randomness

Noting that x1 = y and that by α-strong convexity one has f(x) −
f(x∗) ≥ α

2 ‖x− x
∗‖22, one can rearrange the above display to obtain

Ef
(

1
k

k∑
t=1

xt

)
− f(x∗) ≤

(1
αη(1− 2βη)k + 2βη

1− 2βη

)
(f(y)− f(x∗)).

Using that η = 1
10β and k = 20κ finally yields (6.1) which itself con-

cludes the proof.

6.4 Random coordinate descent

We assume throughout this section that f is a convex and differentiable
function on Rn, with a unique3 minimizer x∗. We investigate one of the
simplest possible scheme to optimize f , the random coordinate descent
(RCD) method. In the following we denote ∇if(x) = ∂f

∂xi
(x). RCD is

defined as follows, with an arbitrary initial point x1 ∈ Rn,

xs+1 = xs − η∇isf(x)eis ,

where is is drawn uniformly at random from [n] (and independently of
everything else).

One can view RCD as SGD with the specific oracle g̃(x) =
n∇If(x)eI where I is drawn uniformly at random from [n]. Clearly
Eg̃(x) = ∇f(x), and furthermore

E‖g̃(x)‖22 = 1
n

n∑
i=1
‖n∇if(x)ei‖22 = n‖∇f(x)‖22.

Thus using Theorem 6.1 (with Φ(x) = 1
2‖x‖

2
2, that is S-MD being SGD)

one immediately obtains the following result.

Theorem 6.6. Let f be convex and L-Lipschitz on Rn, then RCD with
η = R

L

√
2
nt satisfies

Ef
(1
t

t∑
s=1

xs

)
−min

x∈X
f(x) ≤ RL

√
2n
t
.

3Uniqueness is only assumed for sake of notation.

6.4. Random coordinate descent 339

Somewhat unsurprisingly RCD requires n times more iterations
than gradient descent to obtain the same accuracy. In the next sec-
tion, we will see that this statement can be greatly improved by taking
into account directional smoothness.

6.4.1 RCD for coordinate-smooth optimization

We assume now directional smoothness for f , that is there exists
β1, . . . , βn such that for any i ∈ [n], x ∈ Rn and u ∈ R,

|∇if(x+ uei)−∇if(x)| ≤ βi|u|.

If f is twice differentiable then this is equivalent to (∇2f(x))i,i ≤ βi. In
particular, since the maximal eigenvalue of a matrix is upper bounded
by its trace, one can see that the directional smoothness implies that f
is β-smooth with β ≤

∑n
i=1 βi. We now study the following “aggressive"

RCD, where the step-sizes are of order of the inverse smoothness:

xs+1 = xs −
1
βis
∇isf(x)eis .

Furthermore we study a more general sampling distribution than uni-
form, precisely for γ ≥ 0 we assume that is is drawn (independently)
from the distribution pγ defined by

pγ(i) = βγi∑n
j=1 β

γ
j

, i ∈ [n].

This algorithm was proposed in Nesterov [2012], and we denote it by
RCD(γ). Observe that, up to a preprocessing step of complexity O(n),
one can sample from pγ in time O(log(n)).

The following rate of convergence is derived in Nesterov [2012],
using the dual norms ‖ · ‖[γ], ‖ · ‖∗[γ] defined by

‖x‖[γ] =

√√√√ n∑
i=1

βγi x
2
i , and ‖x‖∗[γ] =

√√√√ n∑
i=1

1
βγi
x2
i .

Theorem 6.7. Let f be convex and such that u ∈ R 7→ f(x + uei) is
βi-smooth for any i ∈ [n], x ∈ Rn. Then RCD(γ) satisfies for t ≥ 2,

Ef(xt)− f(x∗) ≤
2R2

1−γ(x1)
∑n
i=1 β

γ
i

t− 1 ,

340 Convex optimization and randomness

where
R1−γ(x1) = sup

x∈Rn:f(x)≤f(x1)
‖x− x∗‖[1−γ].

Recall from Theorem 3.3 that in this context the basic gradient
descent attains a rate of β‖x1 − x∗‖22/t where β ≤

∑n
i=1 βi (see the

discussion above). Thus we see that RCD(1) greatly improves upon
gradient descent for functions where β is of order of

∑n
i=1 βi. Indeed in

this case both methods attain the same accuracy after a fixed number
of iterations, but the iterations of coordinate descent are potentially
much cheaper than the iterations of gradient descent.

Proof. By applying (3.5) to the βi-smooth function u ∈ R 7→ f(x+uei)
one obtains

f

(
x− 1

βi
∇if(x)ei

)
− f(x) ≤ − 1

2βi
(∇if(x))2.

We use this as follows:

Eisf(xs+1)− f(xs) =
n∑
i=1

pγ(i)
(
f

(
xs −

1
βi
∇if(xs)ei

)
− f(xs)

)

≤ −
n∑
i=1

pγ(i)
2βi

(∇if(xs))2

= − 1
2
∑n
i=1 β

γ
i

(
‖∇f(xs)‖∗[1−γ]

)2
.

Denote δs = Ef(xs) − f(x∗). Observe that the above calculation can
be used to show that f(xs+1) ≤ f(xs) and thus one has, by definition
of R1−γ(x1),

δs ≤ ∇f(xs)>(xs − x∗)
≤ ‖xs − x∗‖[1−γ]‖∇f(xs)‖∗[1−γ]

≤ R1−γ(x1)‖∇f(xs)‖∗[1−γ].

Thus putting together the above calculations one obtains

δs+1 ≤ δs −
1

2R2
1−γ(x1)

∑n
i=1 β

γ
i

δ2
s .

The proof can be concluded with similar computations than for Theo-
rem 3.3.

6.4. Random coordinate descent 341

We discussed above the specific case of γ = 1. Both γ = 0 and
γ = 1/2 also have an interesting behavior, and we refer to Nesterov
[2012] for more details. The latter paper also contains a discussion of
high probability results and potential acceleration à la Nesterov. We
also refer to Richtárik and Takác [2012] for a discussion of RCD in a
distributed setting.

6.4.2 RCD for smooth and strongly convex optimization

If in addition to directional smoothness one also assumes strong con-
vexity, then RCD attains in fact a linear rate.

Theorem 6.8. Let γ ≥ 0. Let f be α-strongly convex w.r.t. ‖ · ‖[1−γ],
and such that u ∈ R 7→ f(x+ uei) is βi-smooth for any i ∈ [n], x ∈ Rn.
Let κγ =

∑n

i=1 β
γ
i

α , then RCD(γ) satisfies

Ef(xt+1)− f(x∗) ≤
(

1− 1
κγ

)t
(f(x1)− f(x∗)).

We use the following elementary lemma.

Lemma 6.9. Let f be α-strongly convex w.r.t. ‖ · ‖ on Rn, then

f(x)− f(x∗) ≤ 1
2α‖∇f(x)‖2∗.

Proof. By strong convexity, Hölder’s inequality, and an elementary cal-
culation,

f(x)− f(y) ≤ ∇f(x)>(x− y)− α

2 ‖x− y‖
2
2

≤ ‖∇f(x)‖∗‖x− y‖ −
α

2 ‖x− y‖
2
2

≤ 1
2α‖∇f(x)‖2∗,

which concludes the proof by taking y = x∗.

We can now prove Theorem 6.8.

Proof. In the proof of Theorem 6.7 we showed that

δs+1 ≤ δs −
1

2
∑n
i=1 β

γ
i

(
‖∇f(xs)‖∗[1−γ]

)2
.

342 Convex optimization and randomness

On the other hand Lemma 6.9 shows that(
‖∇f(xs)‖∗[1−γ]

)2
≥ 2αδs.

The proof is concluded with straightforward calculations.

6.5 Acceleration by randomization for saddle points

We explore now the use of randomness for saddle point computations.
That is we consider the context of Section 5.2.1 with a stochastic
oracle of the following form: given z = (x, y) ∈ X × Y it outputs
g̃(z) = (g̃X (x, y), g̃Y(x, y)) where E (g̃X (x, y)|x, y) ∈ ∂xϕ(x, y), and
E (g̃Y(x, y)|x, y) ∈ ∂y(−ϕ(x, y)). Instead of using true subgradients as
in SP-MD (see Section 5.2.2) we use here the outputs of the stochastic
oracle. We refer to the resulting algorithm as S-SP-MD (Stochastic Sad-
dle Point Mirror Descent). Using the same reasoning than in Section
6.1 and Section 5.2.2 one can derive the following theorem.

Theorem 6.10. Assume that the stochastic oracle is such that
E (‖g̃X (x, y)‖∗X)2 ≤ B2

X , and E
(
‖g̃Y(x, y)‖∗Y

)2 ≤ B2
Y . Then S-SP-MD

with a = BX
RX

, b = BY
RY

, and η =
√

2
t satisfies

E
(

max
y∈Y

ϕ

(
1
t

t∑
s=1

xs, y

)
−min

x∈X
ϕ

(
x,

1
t

t∑
s=1

ys

))
≤ (RXBX+RYBY)

√
2
t
.

Using S-SP-MD we revisit the examples of Section 5.2.4 and
Section 5.2.4. In both cases one has ϕ(x, y) = x>Ay (with Ai being
the ith column of A), and thus ∇xϕ(x, y) = Ay and ∇yϕ(x, y) = A>x.

Matrix games. Here x ∈ ∆n and y ∈ ∆m. Thus there is a quite
natural stochastic oracle:

g̃X (x, y) = AI , where I ∈ [m] is drawn according to y ∈ ∆m, (6.4)

and ∀i ∈ [m],

g̃Y(x, y)(i) = Ai(J), where J ∈ [n] is drawn according to x ∈ ∆n.

(6.5)

6.6. Convex relaxation and randomized rounding 343

Clearly ‖g̃X (x, y)‖∞ ≤ ‖A‖max and ‖g̃X (x, y)‖∞ ≤ ‖A‖max, which
implies that S-SP-MD attains an ε-optimal pair of points with
O
(
‖A‖2max log(n+m)/ε2) iterations. Furthermore the computa-

tional complexity of a step of S-SP-MD is dominated by drawing
the indices I and J which takes O(n + m). Thus overall the com-
plexity of getting an ε-optimal Nash equilibrium with S-SP-MD is
O
(
‖A‖2max(n+m) log(n+m)/ε2). While the dependency on ε is

worse than for SP-MP (see Section 5.2.4), the dependencies on the
dimensions is Õ(n + m) instead of Õ(nm). In particular, quite aston-
ishingly, this is sublinear in the size of the matrix A. The possibility of
sublinear algorithms for this problem was first observed in Grigoriadis
and Khachiyan [1995].

Linear classification. Here x ∈ B2,n and y ∈ ∆m. Thus the stochas-
tic oracle for the x-subgradient can be taken as in (6.4) but for the
y-subgradient we modify (6.5) as follows. For a vector x we denote by
x2 the vector such that x2(i) = x(i)2. For all i ∈ [m], g̃Y(x, y)(i) =
‖x‖2

x(j)Ai(J), where J ∈ [n] is drawn according to x2

‖x‖2
2
∈ ∆n. Note

that one indeed has E(g̃Y(x, y)(i)|x, y) =
∑n
j=1 x(j)Ai(j) = (A>x)(i).

Furthermore ‖g̃X (x, y)‖2 ≤ B, and

E(‖g̃Y(x, y)‖2∞|x, y) =
n∑
j=1

x(j)2

‖x‖22
max
i∈[m]

(
‖x‖2

x(j)Ai(j)
)2

≤
n∑
j=1

max
i∈[m]

Ai(j)2.

Unfortunately this last term can be O(n). However it turns out that
one can do a more careful analysis of mirror descent in terms of local
norms, which allows to prove that the “local variance" is dimension-
free. We refer to Bubeck and Cesa-Bianchi [2012] for more details on
these local norms, and to Clarkson et al. [2012] for the specific details
in the linear classification situation.

6.6 Convex relaxation and randomized rounding

In this section we briefly discuss the concept of convex relaxation, and
the use of randomization to find approximate solutions. By now there
is an enormous literature on these topics, and we refer to Barak [2014]

344 Convex optimization and randomness

for further pointers.
We study here the seminal example of MAXCUT. This problem

can be described as follows. Let A ∈ Rn×n+ be a symmetric matrix of
non-negative weights. The entry Ai,j is interpreted as a measure of
the “dissimilarity" between point i and point j. The goal is to find a
partition of [n] into two sets, S ⊂ [n] and Sc, so as to maximize the
total dissimilarity between the two groups:

∑
i∈S,j∈Sc Ai,j . Equivalently

MAXCUT corresponds to the following optimization problem:

max
x∈{−1,1}n

1
2

n∑
i,j=1

Ai,j(xi − xj)2. (6.6)

Viewing A as the (weighted) adjacency matrix of a graph, one can
rewrite (6.6) as follows, using the graph Laplacian L = D − A where
D is the diagonal matrix with entries (

∑n
j=1Ai,j)i∈[n],

max
x∈{−1,1}n

x>Lx. (6.7)

It turns out that this optimization problem is NP-hard, that is the
existence of a polynomial time algorithm to solve (6.7) would prove
that P = NP. The combinatorial difficulty of this problem stems from
the hypercube constraint. Indeed if one replaces {−1, 1}n by the Eu-
clidean sphere, then one obtains an efficiently solvable problem (it is
the problem of computing the maximal eigenvalue of L).

We show now that, while (6.7) is a difficult optimization problem,
it is in fact possible to find relatively good approximate solutions by
using the power of randomization. Let ζ be uniformly drawn on the
hypercube {−1, 1}n, then clearly

E ζ>Lζ =
n∑

i,j=1,i 6=j
Ai,j ≥

1
2 max
x∈{−1,1}n

x>Lx.

This means that, on average, ζ is a 1/2-approximate solution to (6.7).
Furthermore it is immediate that the above expectation bound implies
that, with probability at least ε, ζ is a (1/2 − ε)-approximate solu-
tion. Thus by repeatedly sampling uniformly from the hypercube one
can get arbitrarily close (with probability approaching 1) to a 1/2-
approximation of MAXCUT.

6.6. Convex relaxation and randomized rounding 345

Next we show that one can obtain an even better approximation ra-
tio by combining the power of convex optimization and randomization.
This approach was pioneered by Goemans and Williamson [1995]. The
Goemans-Williamson algorithm is based on the following inequality

max
x∈{−1,1}n

x>Lx = max
x∈{−1,1}n

〈L, xx>〉 ≤ max
X∈Sn+,Xi,i=1,i∈[n]

〈L,X〉.

The right hand side in the above display is known as the convex (or
SDP) relaxation of MAXCUT. The convex relaxation is an SDP and
thus one can find its solution efficiently with Interior Point Meth-
ods (see Section 5.3). The following result states both the Goemans-
Williamson strategy and the corresponding approximation ratio.

Theorem 6.11. Let Σ be the solution to the SDP relaxation of
MAXCUT. Let ξ ∼ N (0,Σ) and ζ = sign(ξ) ∈ {−1, 1}n. Then

E ζ>Lζ ≥ 0.878 max
x∈{−1,1}n

x>Lx.

The proof of this result is based on the following elementary geo-
metric lemma.

Lemma 6.12. Let ξ ∼ N (0,Σ) with Σi,i = 1 for i ∈ [n], and ζ =
sign(ξ). Then

E ζiζj = 2
π

arcsin (Σi,j) .

Proof. Let V ∈ Rn×n (with ith row V >i) be such that Σ = V V >. Note
that since Σi,i = 1 one has ‖Vi‖2 = 1 (remark also that necessarily
|Σi,j | ≤ 1, which will be important in the proof of Theorem 6.11).
Let ε ∼ N (0, In) be such that ξ = V ε. Then ζi = sign(V >i ε), and in
particular

E ζiζj = P(V >i ε ≥ 0 and V >j ε ≥ 0) + P(V >i ε ≤ 0 and V >j ε ≤ 0
−P(V >i ε ≥ 0 and V >j ε < 0)− P(V >i ε < 0 and V >j ε ≥ 0)

= 2P(V >i ε ≥ 0 and V >j ε ≥ 0)− 2P(V >i ε ≥ 0 and V >j ε < 0)
= P(V >j ε ≥ 0|V >i ε ≥ 0)− P(V >j ε < 0|V >i ε ≥ 0)
= 1− 2P(V >j ε < 0|V >i ε ≥ 0).

346 Convex optimization and randomness

Now a quick picture shows that P(V >j ε < 0|V >i ε ≥ 0) = 1
πarccos(V >i Vj)

(recall that ε/‖ε‖2 is uniform on the Euclidean sphere). Using the fact
that V >i Vj = Σi,j and arccos(x) = π

2−arcsin(x) conclude the proof.

We can now get to the proof of Theorem 6.11.

Proof. We shall use the following inequality:

1− 2
π

arcsin(t) ≥ 0.878(1− t), ∀t ∈ [−1, 1]. (6.8)

Also remark that for X ∈ Rn×n such that Xi,i = 1, one has

〈L,X〉 =
n∑

i,j=1
Ai,j(1−Xi,j),

and in particular for x ∈ {−1, 1}n, x>Lx =
∑n
i,j=1Ai,j(1−xixj). Thus,

using Lemma 6.12, and the facts that Ai,j ≥ 0 and |Σi,j | ≤ 1 (see the
proof of Lemma 6.12), one has

E ζ>Lζ =
n∑

i,j=1
Ai,j

(
1− 2

π
arcsin (Σi,j)

)

≥ 0.878
n∑

i,j=1
Ai,j (1− Σi,j)

= 0.878 max
X∈Sn+,Xi,i=1,i∈[n]

〈L,X〉

≥ 0.878 max
x∈{−1,1}n

x>Lx.

Theorem 6.11 depends on the form of the Laplacian L (insofar as
(6.8) was used). We show next a result from Nesterov [1997] that ap-
plies to any positive semi-definite matrix, at the expense of the constant
of approximation. Precisely we are now interested in the following op-
timization problem:

max
x∈{−1,1}n

x>Bx. (6.9)

The corresponding SDP relaxation is

max
X∈Sn+,Xi,i=1,i∈[n]

〈B,X〉.

6.7. Random walk based methods 347

Theorem 6.13. Let Σ be the solution to the SDP relaxation of (6.9).
Let ξ ∼ N (0,Σ) and ζ = sign(ξ) ∈ {−1, 1}n. Then

E ζ>Bζ ≥ 2
π

max
x∈{−1,1}n

x>Bx.

Proof. Lemma 6.12 shows that

E ζ>Bζ =
n∑

i,j=1
Bi,j

2
π

arcsin (Xi,j) = 2
π
〈B, arcsin(X)〉.

Thus to prove the result it is enough to show that 〈B, arcsin(Σ)〉 ≥
〈B,Σ〉, which is itself implied by arcsin(Σ) � Σ (the implication is true
since B is positive semi-definite, just write the eigendecomposition).
Now we prove the latter inequality via a Taylor expansion. Indeed recall
that |Σi,j | ≤ 1 and thus denoting by A◦α the matrix where the entries
are raised to the power α one has

arcsin(Σ) =
+∞∑
k=0

(2k
k

)
4k(2k + 1)Σ◦(2k+1) = Σ +

+∞∑
k=1

(2k
k

)
4k(2k + 1)Σ◦(2k+1).

Finally one can conclude using the fact if A,B � 0 then A ◦ B � 0.
This can be seen by writing A = V V >, B = UU>, and thus

(A ◦B)i,j = V >i VjU
>
i Uj = Tr(UjV >j ViU>i) = 〈ViU>i , VjU>j 〉.

In other words A ◦ B is a Gram-matrix and, thus it is positive semi-
definite.

6.7 Random walk based methods

Randomization naturally suggests itself in the center of gravity method
(see Section 2.1), as a way to circumvent the exact calculation of the
center of gravity. This idea was proposed and developed in Bertsimas
and Vempala [2004]. We give below a condensed version of the main
ideas of this paper.

Assuming that one can draw independent points X1, . . . , XN uni-
formly at random from the current set St, one could replace ct by
ĉt = 1

N

∑N
i=1Xi. Bertsimas and Vempala [2004] proved the following

348 Convex optimization and randomness

generalization of Lemma 2.2 for the situation where one cuts a convex
set through a point close the center of gravity. Recall that a convex set
K is in isotropic position if EX = 0 and EXX> = In, where X is a
random variable drawn uniformly at random from K. Note in particular
that this implies E‖X‖22 = n. We also say that K is in near-isotropic
position if 1

2 In � EXX> � 3
2 In.

Lemma 6.14. Let K be a convex set in isotropic position. Then for any
w ∈ Rn, w 6= 0, z ∈ Rn, one has

Vol
(
K ∩ {x ∈ Rn : (x− z)>w ≥ 0}

)
≥
(1
e
− ‖z‖2

)
Vol(K).

Thus if one can ensure that St is in (near) isotropic position, and
‖ct − ĉt‖2 is small (say smaller than 0.1), then the randomized center
of gravity method (which replaces ct by ĉt) will converge at the same
speed than the original center of gravity method.

Assuming that St is in isotropic position one immediately obtains
E‖ct − ĉt‖22 = n

N , and thus by Chebyshev’s inequality one has P(‖ct −
ĉt‖2 > 0.1) ≤ 100 n

N . In other words with N = O(n) one can ensure
that the randomized center of gravity method makes progress on a
constant fraction of the iterations (to ensure progress at every step one
would need a larger value of N because of an union bound, but this is
unnecessary).

Let us now consider the issue of putting St in near-isotropic po-
sition. Let Σ̂t = 1

N

∑N
i=1(Xi − ĉt)(Xi − ĉt)>. Rudelson [1999] showed

that as long as N = Ω̃(n), one has with high probability (say at least
probability 1 − 1/n2) that the set Σ̂−1/2

t (St − ĉt) is in near-isotropic
position.

Thus it only remains to explain how to sample from a near-isotropic
convex set K. This is where random walk ideas come into the picture.
The hit-and-run walk4 is described as follows: at a point x ∈ K, let L
be a line that goes through x in a direction taken uniformly at random,
then move to a point chosen uniformly at random in L∩K. Lovász [1998]

4Other random walks are known for this problem but hit-and-run is the one with
the sharpest theoretical guarantees. Curiously we note that one of those walks is
closely connected to projected gradient descent, see Bubeck et al. [2015a].

6.7. Random walk based methods 349

showed that if the starting point of the hit-and-run walk is chosen from
a distribution “close enough" to the uniform distribution on K, then
after O(n3) steps the distribution of the last point is ε away (in total
variation) from the uniform distribution on K. In the randomized center
of gravity method one can obtain a good initial distribution for St by
using the distribution that was obtained for St−1. In order to initialize
the entire process correctly we start here with S1 = [−L,L]n ⊃ X (in
Section 2.1 we used S1 = X), and thus we also have to use a separation
oracle at iterations where ĉt 6∈ X , just like we did for the ellipsoid
method (see Section 2.2).

Wrapping up the above discussion, we showed (informally) that to
attain an ε-optimal point with the randomized center of gravity method
one needs: Õ(n) iterations, each iterations requires Õ(n) random sam-
ples from St (in order to put it in isotropic position) as well as a call
to either the separation oracle or the first order oracle, and each sam-
ple costs Õ(n3) steps of the random walk. Thus overall one needs Õ(n)
calls to the separation oracle and the first order oracle, as well as Õ(n5)
steps of the random walk.

Acknowledgements

This text grew out of lectures given at Princeton University in 2013
and 2014. I would like to thank Mike Jordan for his support in this
project. My gratitude goes to the four reviewers, and especially the
non-anonymous referee Francis Bach, whose comments have greatly
helped to situate this monograph in the vast optimization literature.
Finally I am thankful to Philippe Rigollet for suggesting the new title
(a previous version of the manuscript was titled “Theory of Convex
Optimization for Machine Learning"), and to Yin-Tat Lee for many
insightful discussions about cutting-plane methods.

350

References

A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums.
Arxiv preprint arXiv:1410.0723, 2014.

Z. Allen-Zhu and L. Orecchia. Linear coupling: An ultimate unification of
gradient and mirror descent. Arxiv preprint arXiv:1407.1537, 2014.

K. M. Anstreicher. Towards a practical volumetric cutting plane method for
convex programming. SIAM Journal on Optimization, 9(1):190–206, 1998.

J.Y Audibert, S. Bubeck, and R. Munos. Bandit view on noisy optimization.
In S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine
Learning. MIT press, 2011.

J.Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial
optimization. Mathematics of Operations Research, 39:31–45, 2014.

F. Bach. Learning with submodular functions: A convex optimization per-
spective. Foundations and Trends R© in Machine Learning, 6(2-3):145–373,
2013.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approxi-
mation with convergence rate o(1/n). In Advances in Neural Information
Processing Systems (NIPS), 2013.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with
sparsity-inducing penalties. Foundations and Trends R© in Machine Learn-
ing, 4(1):1–106, 2012.

B. Barak. Sum of squares upper bounds, lower bounds, and open questions.
Lecture Notes, 2014.

351

352 References

A. Beck and M. Teboulle. Mirror Descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–
175, 2003.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization:
analysis, algorithms, and engineering applications. Society for Industrial
and Applied Mathematics (SIAM), 2001.

D. Bertsimas and S. Vempala. Solving convex programs by random walks.
Journal of the ACM, 51:540–556, 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122,
2011.

S. Bubeck. Introduction to online optimization. Lecture Notes, 2011.
S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochas-

tic multi-armed bandit problems. Foundations and Trends R© in Machine
Learning, 5(1):1–122, 2012.

S. Bubeck and R. Eldan. The entropic barrier: a simple and optimal universal
self-concordant barrier. Arxiv preprint arXiv:1412.1587, 2014.

S. Bubeck, R. Eldan, and J. Lehec. Sampling from a log-concave distribu-
tion with projected langevin monte carlo. Arxiv preprint arXiv:1507.02564,
2015a.

S. Bubeck, Y.-T. Lee, and M. Singh. A geometric alternative to nesterov’s
accelerated gradient descent. Arxiv preprint arXiv:1506.08187, 2015b.

E. Candès and B. Recht. Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772, 2009.

A. Cauchy. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging
and Vision, 40(1):120–145, 2011.

References 353

K. Clarkson, E. Hazan, and D. Woodruff. Sublinear optimization for machine
learning. Journal of the ACM, 2012.

A. Conn, K. Scheinberg, and L. Vicente. Introduction to Derivative-Free Op-
timization. Society for Industrial and Applied Mathematics (SIAM), 2009.

T. M. Cover. 1990 shannon lecture. IEEE information theory society newslet-
ter, 42(4), 1992.

A. d’Aspremont. Smooth optimization with approximate gradient. SIAM
Journal on Optimization, 19(3):1171–1183, 2008.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems (NIPS), 2014.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed on-
line prediction using mini-batches. Journal of Machine Learning Research,
13:165–202, 2012.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective
mirror descent. In Proceedings of the 23rd Annual Conference on Learning
Theory (COLT), 2010.

J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open
loop step size rules. Journal of Mathematical Analysis and Applications, 62
(2):432–444, 1978.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
research logistics quarterly, 3(1-2):95–110, 1956.

M. P. Friedlander and P. Tseng. Exact regularization of convex programs.
SIAM Journal on Optimization, 18(4):1326–1350, 2007.

M. Goemans and D. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42(6):1115–1145, 1995.

M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized ap-
proximation algorithm for matrix games. Operations Research Letters, 18:
53–58, 1995.

B. Grünbaum. Partitions of mass-distributions and of convex bodies by hy-
perplanes. Pacific J. Math, 10(4):1257–1261, 1960.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learn-
ing. Springer, 2001.

E. Hazan. The convex optimization approach to regret minimization. In
S. Sra, S. Nowozin, and S. Wright, editors, Optimization for Machine Learn-
ing, pages 287–303. MIT press, 2011.

354 References

M. Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization.
In Proceedings of the 30th International Conference on Machine Learning
(ICML), pages 427–435, 2013.

P. Jain, P. Netrapalli, and S. Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC ’13, pages 665–674, 2013.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using pre-
dictive variance reduction. In Advances in Neural Information Processing
Systems (NIPS), 2013.

L. K. Jones. A simple lemma on greedy approximation in hilbert space
and convergence rates for projection pursuit regression and neural network
training. Annals of Statistics, pages 608–613, 1992.

A. Juditsky and A. Nemirovski. First-order methods for nonsmooth convex
large-scale optimization, i: General purpose methods. In S. Sra, S. Nowozin,
and S. Wright, editors, Optimization for Machine Learning, pages 121–147.
MIT press, 2011a.

A. Juditsky and A. Nemirovski. First-order methods for nonsmooth con-
vex large-scale optimization, ii: Utilizing problem’s structure. In S. Sra,
S. Nowozin, and S. Wright, editors, Optimization for Machine Learning,
pages 149–183. MIT press, 2011b.

N. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

S. Lacoste-Julien, M. Schmidt, and F. Bach. A simpler approach to obtaining
an o (1/t) convergence rate for the projected stochastic subgradient method.
arXiv preprint arXiv:1212.2002, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with
an exponential convergence rate for strongly-convex optimization with fi-
nite training sets. In Advances in Neural Information Processing Systems
(NIPS), 2012.

Y.-T. Lee and A. Sidford. Path finding i :solving linear programs with
ÃŢ(sqrt(rank)) linear system solves. Arxiv preprint arXiv:1312.6677, 2013.

Y.-T. Lee, A. Sidford, and S. C.-W Wong. A faster cutting plane
method and its implications for combinatorial and convex optimization.
abs/1508.04874, 2015.

A. Levin. On an algorithm for the minimization of convex functions. In Soviet
Mathematics Doklady, volume 160, pages 1244–1247, 1965.

L. Lovász. Hit-and-run mixes fast. Math. Prog., 86:443–461, 1998.

References 355

G. Lugosi. Comment on: `1-penalization for mixture regression models. Test,
19(2):259–263, 2010.

N. Maculan and G. G. de Paula. A linear-time median-finding algorithm for
projecting a vector on the simplex of rn. Operations research letters, 8(4):
219–222, 1989.

A. Nemirovski. Orth-method for smooth convex optimization. Izvestia AN
SSSR, Ser. Tekhnicheskaya Kibernetika, 2, 1982.

A. Nemirovski. Information-based complexity of convex programming. Lecture
Notes, 1995.

A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational
inequalities with lipschitz continuous monotone operators and smooth
convex-concave saddle point problems. SIAM Journal on Optimization,
15(1):229–251, 2004a.

A. Nemirovski. Interior point polynomial time methods in convex program-
ming. Lecture Notes, 2004b.

A. Nemirovski and D. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley Interscience, 1983.

Y. Nesterov. A method of solving a convex programming problem with con-
vergence rate o(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic op-
timization. CORE Discussion Papers 1997019, Université catholique de
Louvain, Center for Operations Research and Econometrics (CORE), 1997.

Y. Nesterov. Introductory lectures on convex optimization: A basic course.
Kluwer Academic Publishers, 2004a.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical
programming, 103(1):127–152, 2004b.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Core discussion papers, Université catholique de Louvain, Center for Op-
erations Research and Econometrics (CORE), 2007.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimiza-
tion problems. SIAM Journal on Optimization, 22:341–362, 2012.

Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in con-
vex programming. Society for Industrial and Applied Mathematics (SIAM),
1994.

D. Newman. Location of the maximum on unimodal surfaces. Journal of the
ACM, 12(3):395–398, 1965.

356 References

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.
N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends R© in

Optimization, 1(3):123–231, 2013.
A. Rakhlin. Lecture notes on online learning. 2009.
J. Renegar. A mathematical view of interior-point methods in convex opti-

mization, volume 3. Siam, 2001.
P. Richtárik and M. Takác. Parallel coordinate descent methods for big data

optimization. Arxiv preprint arXiv:1212.0873, 2012.
H. Robbins and S. Monro. A stochastic approximation method. Annals of

Mathematical Statistics, 22:400–407, 1951.
R. Rockafellar. Convex Analysis. Princeton University Press, 1970.
M. Rudelson. Random vectors in the isotropic position. Journal of Functional

Analysis, 164:60–72, 1999.
M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-

gradient methods for convex optimization. In Advances in neural informa-
tion processing systems, pages 1458–1466, 2011.

B. Schölkopf and A. Smola. Learning with kernels. MIT Press, 2002.
S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From

Theory to Algorithms. Cambridge University Press, 2014.
S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods

for regularized loss minimization. Journal of Machine Learning Research,
14:567–599, 2013a.

S. Shalev-Shwartz and T. Zhang. Accelerated mini-batch stochastic dual co-
ordinate ascent. In Advances in Neural Information Processing Systems
(NIPS), 2013b.

W. Su, S. Boyd, and E. Candès. A differential equation for modeling nesterov’s
accelerated gradient method: Theory and insights. In Advances in Neural
Information Processing Systems (NIPS), 2014.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), 58(1):pp. 267–288,
1996.

P. Tseng. On accelerated proximal gradient methods for convex-concave op-
timization. 2008.

A. Tsybakov. Optimal rates of aggregation. In Conference on Learning Theory
(COLT), pages 303–313. 2003.

References 357

P. M. Vaidya. A new algorithm for minimizing convex functions over convex
sets. In Foundations of Computer Science, 1989., 30th Annual Symposium
on, pages 338–343, 1989.

P. M. Vaidya. A new algorithm for minimizing convex functions over convex
sets. Mathematical programming, 73(3):291–341, 1996.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction
by separable approximation. IEEE Transactions on Signal Processing, 57
(7):2479–2493, 2009.

L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11:2543–2596, 2010.

Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regular-
ized empirical risk minimization. Arxiv preprint arXiv:1409.3257, 2014.

	Introduction
	Some convex optimization problems in machine learning
	Basic properties of convexity
	Why convexity?
	Black-box model
	Structured optimization
	Overview of the results and disclaimer

	Convex optimization in finite dimension
	The center of gravity method
	The ellipsoid method
	Vaidya's cutting plane method
	Conjugate gradient

	Dimension-free convex optimization
	Projected subgradient descent for Lipschitz functions
	Gradient descent for smooth functions
	Conditional gradient descent, aka Frank-Wolfe
	Strong convexity
	Lower bounds
	Geometric descent
	Nesterov's accelerated gradient descent

	Almost dimension-free convex optimization in non-Euclidean spaces
	Mirror maps
	Mirror descent
	Standard setups for mirror descent
	Lazy mirror descent, aka Nesterov's dual averaging
	Mirror prox
	The vector field point of view on MD, DA, and MP

	Beyond the black-box model
	Sum of a smooth and a simple non-smooth term
	Smooth saddle-point representation of a non-smooth function
	Interior point methods

	Convex optimization and randomness
	Non-smooth stochastic optimization
	Smooth stochastic optimization and mini-batch SGD
	Sum of smooth and strongly convex functions
	Random coordinate descent
	Acceleration by randomization for saddle points
	Convex relaxation and randomized rounding
	Random walk based methods

	Acknowledgements
	References

