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Abstract

We consider the problem of finding the best arm in a stochasticmulti-armed bandit game. The
regret of a forecaster is here defined by the gap between the mean reward of the optimal arm
and the mean reward of the ultimately chosen arm. We propose ahighly exploring UCB policy
and a new algorithm based on successive rejects. We show thatthese algorithms are essentially
optimal since their regret decreases exponentially at a rate which is, up to a logarithmic factor, the
best possible. However, while the UCB policy needs the tuning of a parameter depending on the
unobservable hardness of the task, the successive rejects policy benefits from being parameter-free,
and also independent of the scaling of the rewards. As a by-product of our analysis, we show
that identifying the best arm (when it is unique) requires a number of samples of order (up to a
log(K) factor)

∑
i 1/∆2

i , where the sum is on the suboptimal arms and∆i represents the difference
between the mean reward of the best arm and the one of armi. This generalizes the well-known
fact that one needs of order of1/∆2 samples to differentiate the means of two distributions with
gap∆.

1 Introduction

In the multi-armed bandit problem, at each stage, an agent (or forecaster) chooses one action (or arm), and
receives a reward from it. In its stochastic version, the reward is drawn from a fixed probability distribution
given the arm. The usual goal is to maximize the cumulative sum of rewards, see Robbins (1952); Auer et al.
(2002) among many others. Since the forecaster does not knowthe distributions, he needs to explore (try)
the different actions and yet, exploit (concentrate its draws on) the seemingly most rewarding arms. In this
paper, we adopt a different viewpoint. We assume that after agiven number of pulls, the forecaster is asked to
output a recommended arm. He is thenonly evaluated by the average payoff of his recommended arm. This
is the so-called pure exploration problem, Bubeck et al. (2009).

The distinguishing feature from the classical multi-armedbandit problem described above is that the
exploration phase and the evaluation phase are separated. Thus, there is no explicit trade-off between the
exploration and the exploitation while pulling the arms. The target of Hoeffding and Bernstein races, see
Maron and Moore (1993); Mnih et al. (2008) among others, is more similar to ours. However, instead of
trying to extract from a fixed number of rounds the best action, racing algorithms try to identify the best
action at a given confidence level while consuming the minimal number of pulls. They optimize the budget
for a given confidence level, instead of optimizing the quality of the recommendation for a given budget size.

We now illustrate why this is a natural framework for numerous applications. Historically, the first oc-
currence of multi-armed bandit problems was given by medical trials, see Robbins (1952). In the case of
a severe disease, ill patients only are included in the trialand the cost of picking the wrong treatment is
high. It is important to minimize the cumulative regret, since the test and cure phases coincide. However,
for cosmetic products, there exists a test phase separated from the commercialization phase, and one aims
at minimizing the regret of the commercialized product rather than the cumulative regret in the test phase,
which is irrelevant.

Another motivating example concerns channel allocation for mobile phone communications. During a
very short time before the communication starts, a cellphone can explore the set of channels to find the
best one to operate. Each evaluation of a channel is noisy andthere is a limited number of evaluations
before the communication starts. The connection is then launched on the channel which is believed to be the
best. Opportunistic communication systems rely on the sameidea. Again the cumulative regret during the



Parameters available to the forecaster: the number of roundsn and the number of armsK.

Parameters unknown to the forecaster: the reward distributionsν1, . . . , νK of the arms.

For each roundt = 1, 2, . . . , n;

(1) the forecaster choosesIt ∈ {1, . . . , K},

(2) the environment draws the rewardXIt,TIt
(t) from νIt and independently of the past

givenIt.

At the end of then rounds, the forecaster outputs a recommendationJn ∈ {1, . . . , K}.

Figure 1: The pure exploration problem for multi-armed bandits.

exploration phase is irrelevant since the user is only interested in the quality of its communication starting
after the exploration phase.

More generally, the pure exploration problem addresses thedesign of strategies making the best possible
use of available resources in order to optimize the performance of some decision-making task. That is, it
occurs in situations with a preliminary exploration phase in which costs are not measured in terms of rewards
but rather in terms of resources that come in limited budget (the number of patients in the test phase in the
clinical trial setting and the time to connect in the communication example).

2 Problem setup

A stochastic multi-armed bandit game is parameterized by the number of armsK, the number of rounds (or
budget)n, andK probability distributionsν1, . . . , νK associated respectively with arm1, . . . , armK. These
distributions are unknown to the forecaster. Fort = 1, . . . , n, at roundt, the forecaster chooses an armIt

in the set of arms{1, . . . ,K}, and observes a reward drawn fromνIt
independently from the past (actions

and observations). At the end of then rounds, the forecaster selects an arm, denotedJn, and is evaluated in
terms of the difference between the mean reward of the optimal arm and the mean reward ofJn. Precisely, let
µ1, . . . , µK be the respective means ofν1, . . . , νK . Let µ∗ = maxk∈{1,...,K} µk. The regret of the forecaster
is

rn = µ∗ − µJn
.

For sake of simplicity,we will assume that the rewards are in[0, 1] and that there is a unique optimal arm.
Let i∗ denote this arm (so,µi∗ = µ∗). Fori 6= i∗, we introduce the following suboptimality measure of armi:

∆i = µ∗ − µi.

For reasons that will be obvious later, we also define∆i∗ as the minimal gap

∆i∗ = min
i6=i∗

∆i.

We introduce the notation(i) ∈ {1, . . . ,K} to denote thei–th best arm (with ties break arbitrarily), hence

∆i∗ = ∆(1) = ∆(2) ≤ ∆(3) ≤ . . . ≤ ∆(K).

Let en denote the probability of error, that is the probability that the recommendation is not the optimal one:

en = P(Jn 6= i∗).

We haveErn =
∑

i6=i∗ P(Jn = i)∆i, and consequently

∆i∗en ≤ Ern ≤ en.

As a consequence of this equation, up to a second order term,en andErn behave similarly, and it does not
harm to focus on the probabilityen.

For each armi and all time roundst ≥ 1, we denote byTi(t) the number of times armi was pulled
from rounds1 to t, and byXi,1,Xi,2, . . . ,Xi,Ti(t) the sequence of associated rewards. IntroduceX̂i,s =
1
s

∑s
t=1 Xi,t the empirical mean of armi afters pulls. In the following, the symbolc will denote a positive

numerical constant which may differ from line to line.



The goal of this work is to propose allocation strategies with small regret, and possibly as small as the best
allocation strategy which would know beforehand the distributionsν1, . . . , νK up to a permutation. Before
going further, note that the goal is unachievable for all distributionsν1, . . . , νK : a policy cannot perform
as well as the “oracle” allocation strategy in every particular cases. For instance, when the supports of
ν1, . . . , νK are disjoint, the oracle forecaster almost surely identifies an arm by a single draw of it. As a
consequence, it has almost surely zero regret for anyn ≥ K. The generic policy which does not have any
knowledge on theK distributions cannot reproduce this performance for anyK-tuple of disjointly supported
distributions. In this work, the above goal of deciding as well as an oracle will be reached for the set of
Bernoulli distributions with parameters in(0, 1), but the algorithms are defined for any distributions supported
in [0, 1].

We would like to mention that the caseK = 2 is unique and simple since, as we will indirectly see,
it is optimally solved by the uniform allocation strategy consisting in drawing each armn/2 times (up to
rounding problem), and at the end recommending the arm with the highest empirical mean. Therefore, our
main contributions concern more the problem of the budget allocation whenK ≥ 3. The hardness of the task
will be characterized by the following quantities

H1 =

K∑

i=1

1

∆2
i

and H2 = max
i∈{1,...,K}

i∆−2
(i) .

These quantities are equivalent up to a logarithmic factor since we have (see Section 6.1)

H2 ≤ H1 ≤ log(2K)H2. (1)

Intuitively, we will show that these quantities are indeed characteristic of the hardness of the problem, in the
sense that they give the order of magnitude of the number of samples required to find the best arm with a
reasonable probability. This statement will be made precise in the rest of the paper, in particular through
Theorem 2 and Theorem 4.

Outline. In Section 3, we propose a highly exploring policy based on upper confidence bounds, called
UCB-E (Upper Confidence Bound Exploration), in the spirit ofUCB1 Auer et al. (2002). We prove that
this algorithm, provided that it is appropriately tuned, has an upper bound on the probability of erroren of
orderexp

(
− c n

H1

)
. The core problem of this policy is the tuning of the parameter. The optimal value of

the parameter depends onH1, which has no reason to be known beforehand by the forecaster, and which, to
our knowledge, cannot be estimated from past observations with sufficiently high confidence in order that the
resulting algorithm still satisfies a similar bound onen.

To get round this limitation, in Section 4, we propose a simple new policy called SR (Successive Rejects)
that progressively rejects the arms which seem to be suboptimal. This algorithm is parameter-free and its
probability of erroren is at most of orderexp

(
− n

log(2K)H2

)
. SinceH2 ≤ H1 ≤ log(2K)H2, up to at most

a logarithmic term inK, the algorithm performs as well as UCB-E while not requiringthe knowledge ofH1.
In Section 5, we prove thatH1 andH2 truly represent the hardness of the problem (up to a logarithmic

factor). Precisely, we consider a forecaster which knows the reward distributions of the armsup to a per-
mutation. When these distributions are of Bernoulli type with parameter in [p, 1 − p] for somep > 0, there
exists a permutation of the distributions for which the probability of error of the (oracle) forecaster is lower
bounded byexp

(
− cn

p(1−p)H2

)
.

Section 6 gathers some of the proofs. Section 7 provides someexperiments testing the efficiency of the
proposed policies and enlightening our theoretical results. We also discuss a modification of UCB-E where
we perform a non-trivial online estimation ofH1. We conclude in Section 8.

Example. To put in perspective the results we just mentioned, let us consider a specific example with
Bernoulli distributions. Letν1 = Ber

(
1
2

)
, andνi = Ber

(
1
2 − 1

Ki

)
for i ∈ {2, . . . ,K}. Here, one can

easily check thatH2 = 2K2K . Thus, in this case, the probability of missing the best arm of SR is at most of
orderexp

(
− n

2 log(2K)K2K

)
. Moreover, in Section 5, we prove that there does not exist any forecaster (even

with the knowledge of the distributions up to a permutation)with a probability of missing the best arm smaller
thanexp

(
− 11n

K2K

)
for infinitely manyn. Thus, our analysis finds that, for this particular reward distributions,

the number of samples required to find the best arm is at least (of order of)K2K , and SR actually finds it
with (of order of)log(K)K2K samples.

3 Highly exploring policy based on upper confidence bounds

In this section, we propose and study the algorithm UCB-E described in Figure 2. Whena is taken of
orderlog n, the algorithm essentially corresponds to the UCB1 policy introduced in Auer et al. (2002), and
its cumulative regret is of orderlog n. Bubeck et al. (2009) have shown that algorithms having at most



Parameter: exploration parametera > 0.

For i ∈ {1, . . . , K}, let Bi,s = bXi,s +
p

a
s

for s ≥ 1 andBi,0 = +∞.

For each roundt = 1, 2, . . . , n:
Draw It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1).

Let Jn ∈ argmaxi∈{1,...,K}
bXi,Ti(n).

Figure 2: UCB-E (Upper Confidence Bound Exploration) algorithm.

logarithmic cumulative regret, have at least a (non-cumulative) regret of ordern−γ for someγ > 0. So taking
a of orderlog n is inappropriate to reach exponentially small probabilityof error. For our regret notion, one
has to explore much more and typically use a parameter which is essentially linear inn. Precisely, we have
the following result, the proof of which can be found in Section 6.2.

Theorem 1 If UCB-E is run with parameter0 < a ≤ 25
36

n−K
H1

, then it satisfies

en ≤ 2nK exp

(
− 2a

25

)
.

In particular for a = 25
36

n−K
H1

, we haveen ≤ 2nK exp
(
− n−K

18H1

)
.

The theorem shows that the probability of error of UCB-E is atmost of orderexp(−ca) for a ≥ log n. In
fact, Theorem 5 in Appendix A shows a corresponding lower bound. In view of this, as long asa ≤ 25

36
n−K
H1

,
we can essentially say: the more we explore (i.e., the largera is), the smaller the regret is. Besides, the small-
est upper bound on the probability of error is obtained fora of ordern/H1, and is therefore exponentially
decreasing withn. The constantH1 depends not only on how close the mean rewards of the two best arms
are, but also on the number of arms and how close their mean reward is to the optimal mean reward. This
constant should be seen as the order of the minimal numbern for which the recommended arm is the optimal
one with high probability. In Section 5, we will show thatH1 is indeed a good measure of the hardness of
the task by showing that no forecaster satisfiesen ≤ exp

(
− cn

H2

)
for any distributionsν1, . . . , νK , where we

recall thatH2 satisfiesH2 ≤ H1 ≤ log(2K)H2.
One interesting message to take from the proof of Theorem 1 isthat, with probability at least1 −

2nK exp
(
− 2a

25

)
, the number of draws of any suboptimal armi is of ordera∆−2

i . This means that the
optimal arm will be played at leastn − caH1, showing that for too smalla, UCB-E ”exploits” too much
in view of our regret target. Theorem 1 does not specify how the algorithm performs whena is larger than
25
36

n−K
H1

. Nevertheless, similar arguments than the ones in the proofshow that for largea, with high probabil-

ity, only low rewarding arms are played of ordera∆−2
i times, whereas the best ones are all drawn the same

number of times up to a constant factor. The number of these similarly drawn arms grows witha. In the limit,
whena goes to infinity, UCB-E is exactly the uniform allocation strategy studied in Bubeck et al. (2009).
In general1, the uniform allocation has a probability of error which canbe lower and upper bounded by a

quantity of the formexp
(
− c

n∆2
i∗

K

)
. It consequently performs much worse than UCB-E fora = 25

36
n−K
H1

,

sinceH1 ≤ K∆−2
i∗ , and potentiallyH1 ≪ K∆−2

i∗ for very large number of arms with heterogeneous mean
rewards.

One straightforward idea to cope with the absence of an oracle telling us the value ofH1 would be to
estimate online the parameterH1 and use this estimation in the algorithm. Unfortunately, wewere not able
to prove, and do not believe that, this modified algorithm generally attains the expected rate of convergence.
Indeed, overestimatingH1 leads to low exploring, and in the event when the optimal arm has given abnor-
mally low rewards, the arm stops being drawn by the policy, its estimated mean reward is thus not corrected,
and the arm is finally not recommended by the policy. On the contrary, underestimatingH1 leads to draw
too much the suboptimal arms, precluding a sufficiently accurate estimation of the mean rewards of the best
arms. For this last case, things are in fact much more subtle than what can be retranscribed in these few lines,
and we notice that keeping track of a lower bound onH1 would lead to the correct rate only under appropri-
ate assumptions on the decrease of the sequence∆(k), k ∈ {1, . . . ,K}. In Section 7 we push this idea and

1We say “in general” to rule out some trivial cases (like when the reward distributions are all Dirac distributions) in
which the probability of erroren would be much smaller.



Let A1 = {1, . . . , K}, log(K) = 1
2

+
PK

i=2
1
i
, n0 = 0 and fork ∈ {1, . . . , K − 1},

nk =

‰

1

log(K)

n − K

K + 1 − k

ı

.

For each phasek = 1, 2, . . . , K − 1:

(1) For eachi ∈ Ak, select armi for nk − nk−1 rounds.

(2) LetAk+1 = Ak \arg mini∈Ak
bXi,nk

(we only remove one element fromAk, if there
is a tie, select randomly the arm to dismiss among the worst arms).

Let Jn be the unique element ofAK .

Figure 3: SR (Successive Rejects) algorithm.

propose a way to estimate onlineH1, however we solely justify the corresponding algorithm by experiments.
In the next section we propose an algorithm which does not suffer from these limitations.

4 Successive Rejects algorithm

In this section, we describe and analyze a new algorithm, SR (Successive Rejects), see Figure 3 for its precise
description. Informally it proceeds as follows. First the algorithm divides the time (i.e., then rounds) in
K − 1 phases. At the end of each phase, the algorithm dismisses thearm with the lowest empirical mean.
During the next phase, it pulls equally often each arm which has not been dismissed yet. The recommended
armJn is the last surviving arm. The length of the phases are carefully chosen to obtain an optimal (up to
a logarithmic factor) convergence rate. More precisely, one arm is pulledn1 =

⌈
1

log(K)
n−K

K

⌉
times, one

n2 =
⌈

1
log(K)

n−K
K−1

⌉
times, ..., and two arms are pullednK−1 =

⌈
1

log(K)
n−K

2

⌉
times. SR does not exceed

the budget ofn pulls, since, from the definitionlog(K) = 1
2 +

∑K
i=2

1
i , we have

n1 + . . . + nK−1 + nK−1 ≤ K +
n − K

log(K)

(
1

2
+

K−1∑

k=1

1

K + 1 − k

)
= n.

ForK = 2, up to rounding effects, SR is just the uniform allocation strategy.

Theorem 2 The probability of error of SR satisfies

en ≤ K(K − 1)

2
exp

(
− n − K

log(K)H2

)
.

Proof: We can assume that the sequence of rewards for each arm is drawn before the beginning of the game.
Thus the empirical reward for armi afters pulls is well defined even if armi has not been actually pulleds
times. During phasek, at least one of thek worst arms is surviving. So, if the optimal armi∗ is dismissed
at the end of phasek, it means thatX̂i∗,nk

≤ maxi∈{(K),(K−1),...,(K+1−k)} X̂i,nk
. By a union bound and

Hoeffding’s inequality, the probability of erroren = P(AK 6= {i∗}) thus satisfies

en ≤
K−1∑

k=1

K∑

i=K+1−k

P(X̂i∗,nk
≤ X̂(i),nk

)

≤
K−1∑

k=1

K∑

i=K+1−k

P(X̂(i),nk
− µi + µ∗ − X̂i∗,nk

≥ ∆(i))

≤
K−1∑

k=1

K∑

i=K+1−k

exp
(
−nk∆2

(i)

)
≤

K−1∑

k=1

k exp
(
−nk∆2

(K+1−k)

)
.



We conclude the proof by noting that by definition ofnk andH2, we have

nk∆2
(K+1−k) ≥

n − K

log(K)

1

(K + 1 − k)∆−2
(K+1−k)

≥ n − K

log(K)H2

. (2)

The following theorem provides a deeper understanding of how SR works. It lower bounds the sampling
times of the arms and shows that at the end of phasek, we have a high-confidence estimation of∆(K+1−k)

up to numerical constant factor. This intuition will prove to be useful in Section 7, see in particular Figure 4.

Theorem 3 With probability at least1 − K3

2 exp
(
− n−K

4log(K)H2

)
, for any armj, we have

Tj(n) ≥ n − K

4log(K)H2∆2
j

. (3)

With probability at least1 − K3 exp
(
− n−K

32log(K)H2

)
, for any k ∈ {1, . . . ,K − 1}, the dismissed arm

ℓk = Ak+1 \ Ak at the end of phasek satisfies

1

4
∆(K+1−k) ≤

1

2
∆ℓk

≤ max
m∈Ak

X̂m,nk
− X̂ℓk,nk

≤ 3

2
∆ℓk

≤ 3∆(K+1−k). (4)

Proof: We consider the eventE on which for anyk ∈ {1, . . . ,K − 1}, for any armℓ in the worstk arms, and
any armj such that2∆j ≤ ∆ℓ, we have

X̂j,nk
− X̂ℓ,nk

> 0.

This event holds with probability at least1 − K3

2 exp
(
− n−K

4log(K)H2

)
, since, from Hoeffding’s inequality, a

union bound and (2), we have

K−1∑

k=1

∑

ℓ∈{(K),(K−1),...,(K+1−k)}
j:2∆j≤∆ℓ

P

(
X̂j,nk

− X̂ℓ,nk
≤ 0

)

≤
K−1∑

k=1

∑

ℓ∈{(K),(K−1),...,(K+1−k)}
j:2∆j≤∆ℓ

exp
(
− nk(∆ℓ − ∆j)

2
)

≤
K−1∑

k=1

kK exp
(
− nk

∆2
(K+1−k)

4

)
≤ K3

2
exp

(
− n − K

4log(K)H2

)
.

During phasek, at least one of thek worst arms is surviving. On the eventE , this surviving arm has an em-
pirical mean at the end of the phase which is smaller than the one of any armj satisfying2∆j ≤ ∆(K+1−k).
So, at the end of phasek, any armj satisfying2∆j ≤ ∆(K+1−k) cannot be dismissed. Now, for a given arm
j, we consider two cases depending whether there existsm ∈ {1, . . . ,K} such that∆(m−1) ≤ 2∆j ≤ ∆(m).

First case.If no suchm exists, then we have∆2
jTj(n) ≥ 1

4∆2
(K)n1 ≥ n−K

4log(K)H2
, so that (3) holds.

Second case.If suchm exists, then, from the above argument, the armj cannot be dismissed before the end
of the phaseK + 2 − m (since there existsK + 1 − m armsℓ such that∆ℓ ≥ 2∆j). From (2), we get

∆2
jTj(n) ≥ ∆2

jnK+2−m ≥
∆2

j

∆2
(m−1)

n − K

log(K)H2

≥ n − K

4log(K)H2

,

which ends the proof of (3). We have seen that at the end of phasek, any armj satisfying2∆j ≤ ∆(K+1−k)

cannot be dismissed. Consequently, at the end of phasek, the dismissed armℓk = Ak+1 \ Ak satisfies the
left inequality of

1

2
∆(K+1−k) ≤ ∆ℓk

≤ 2∆(K+1−k). (5)

Let us now prove the right inequality by contradiction. Consider k such that2∆(K+1−k) < ∆ℓk
. Arm ℓk

thus belongs to thek − 1 worst arms. Hence, in the firstk − 1 rejects, say at the end of phasek′, an arm
j with ∆j ≤ ∆(K+1−k) is dismissed. From the left inequality of (5), we get∆(K+1−k′) ≤ 2∆j < ∆ℓk

.



On the eventE , we thus havêXj,nk′
− X̂ℓk,nk′

> 0 (sinceℓk belongs to thek′ worst arms by the previous
inequality). This contradicts the fact thatj is rejected at phasek′. So (5) holds.

Now letE ′ be the event on which for any armj, and anyk ∈ {1, . . . ,K − 1}
∣∣X̂j,nk

− µj

∣∣ ≤ ∆(K+1−k)

8 .
Using again Hoeffding’s inequality, a union bound and (2), this event holds with probability at least1 −
2K(K − 1) exp

(
− n−K

32log(K)H2

)
. We now work on the eventE ∩ E ′, which holds with probability at least

1 − K3 exp
(
− n−K

32log(K)H2

)
. From (5), the dismissed armℓk at the end of phasek satisfies

∣∣X̂ℓk,nk
− µℓk

∣∣ ≤ ∆(K+1−k)

8
≤ ∆ℓk

4
.

Besides, we also have
∣∣ max

m∈Ak

X̂m,nk
− µ(1)

∣∣ ≤ ∆(K+1−k)

8
≤ ∆ℓk

4
.

Consequently, at the end of phasek, we have

1

4
∆(K+1−k) ≤

1

2
∆ℓk

≤ max
m∈Ak

X̂m,nk
− X̂ℓk,nk

≤ 3

2
∆ℓk

≤ 3∆(K+1−k).

5 Lower bound

In this section we provide a very general and somewhat surprising lower bound. We prove that, when the
reward distributions are Bernoulli distributions with variances bounded away from0, then for any forecaster,
one can permute the distributions on the arms (before the game starts) so that the probability of missing the

best arm will be at least of orderexp
(
− cn

H2

)
. Note that, in this formulation, we allow the forecaster toknow

the reward distributions up to a permutation of the indeces!However, as the lower bound expresses it, even
in this relatively easier case, the quantityH2 is a good measure of the hardness of finding the best arm

Theorem 4 (Lower Bound) Let ν1, . . . , νK be Bernoulli distributions with parameters in[p, 1 − p], p ∈
(0, 1/2). For any forecaster, there exists a permutationσ : {1, . . . ,K} → {1, . . . ,K} such that the proba-
bility error of the forecaster on the bandit problem defined by ν̃1 = νσ(1), . . . , ν̃K = νσ(K) satisfies

en ≥ exp

(
− (5 + o(1))n

p(1 − p)H2

)
,

where the o(1) term depends only onK, p andn and goes to0 whenn goes to infinity (see the end of the
proof).

The proof of this result is quite technical. However, it is simple to explain why we can expect such a
bound to hold. Assume (without loss of generality) that the arms are ordered, i.e.,µ1 > µ2 ≥ . . . ≥ µK , and
that all rewardsXi,t, t ∈ {1, . . . , n}, i ∈ {1, . . . ,K}, are drawn before the game starts. Leti ∈ {2, . . . ,K}.
If X̂1,n/i < X̂i,n/i ≤ X̂j,n/i for all j ∈ {2, . . . , i − 1}, then it seems reasonable that a good forecaster
should not pull arm1 more thann/i times, and furthermore not select it as its recommendation.One can see
that, the probability of the event we just described is of order of exp(−c(n/i)∆2

i ). Thus, with probability at
leastexp(−cn/max2≤i≤K i∆−2

i ), the forecaster makes an error, which is exactly the lower bound we pro-
pose. However, note that this argument does not yield a reasonable proof strategy, in particular we assumed a
”good” forecaster with a ”reasonable” behavior. For instance, it is obvious that the proof has to permute the
arms, since a forecaster could, despite all, choose arm1 as its recommendation, which imply a probability
error of0 as soon as the best arm is in position1.

The main idea of our proposed proof goes as follows. A bandit problem is defined by a product distri-
butionν = ν1 ⊗ · · · ⊗ νK . One can consider that at the beginning of the game,n K-tuples of rewards are
sampled from this product distribution. This defines a tableof nK rewards. A forecaster will explore a sub-
part of this table. We want to find a permutationσ of {1, . . . ,K} so that the indices of the best arm forν and
ν̃ = νσ(1)⊗· · ·⊗νσ(K) are different and such that the likelihood ratio of the explored part of the table ofnK

rewards underν andν̃ is at least of orderexp(−cn/H2) with probability with respect toν⊗n lower bounded
by a positive numerical constant. This would imply the claimed bound. Remark that, the ”likelihood cost” of
moving distributionνi to armj depends on both the (Kullback-Leibler) distance between the distributionsνi

andνj , and the number of times armj is pulled. Thus, we have to find the right trade-off between moving



a distribution to a ”close” distribution, and the fact that the target arm should not be pulled too much. To do
this, we ”slice” the set of indeces in a non-trivial (and non-intuitive) way. This ”slicing” depends only on the
reward distributions, and not on the considered forecaster. Then, to put it simply, we move the less drawn arm
from one slice to the less drawn arm in the next slice. Note that the preceding sentence is not well defined,
since by doing this we would get a random permutation (which of course does not make sense to derive a
lower bound). However, at the cost of some technical difficulties, it is possible to circumvent this issue.

To achieve the program outlined above, as already hinted, weuse the Kullback-Leibler divergence, which
is defined for two probability distributionsρ, ρ′ on [0, 1] with ρ absolutely continuous with respect toρ′ as:

KL(ρ, ρ′) =

∫ 1

0

log

(
dρ

dρ′
(x)

)
dρ(x) = EX∼ρ log

(
dρ

dρ′
(X)

)
.

Another quantity of particular interest for our analysis is

K̂Li,t(ρ, ρ′) =
t∑

s=1

log

(
dρ

dρ′
(Xi,s)

)
.

In particular note that, if armi has distributionρ, then this quantity represents the (non re-normalized) empir-
ical estimation ofKL(ρ, ρ′) aftert pulls of armi. Let Pν andEν the probability and expectation signs when
we integrate with respect to the distributionν⊗n. Another important property is that for any two product
distributionsν, ν′, which differ only on indexi, and for any eventA, one has:

Pν(A) = Eν′1A exp
(
−K̂Li,Ti(n)(ν

′
i, νi)

)
, (6)

since we have
∏Ti,n

s=1
dνi

dν′

i

(Xi,s) = exp
(
− K̂Li,Ti(n)(ν

′
i, νi)

)
.

Proof: First step: Notations. Without loss of generality we can assume thatν is ordered in the sense that
µ1 > µ2 ≥ . . . ≥ µK . Moreover letL ∈ {2, . . . ,K} such thatH2 = L/∆2

L, that is for alli ∈ {1, . . . ,K},

i/∆2
i ≤ L/∆2

L. (7)

We define now recursively the following sets. Letk1 = 1,

Σ1 =

{
i : µL ≤ µi ≤ µL +

∆L

L1/2k1

}
,

and forj > 1,

Σj =

{
i : µL +

∆L

L1/2kj−1
< µi ≤ µL +

∆L

L1/2kj

}
,

wherekj is the smallest integer (if it exists, otherwise setkj = +∞) such that|Σj | > 2|Σj−1|. Let
ℓ = max{j : kj < +∞}. We define now the random variablesZ1, . . . , Zℓ corresponding to the indices of
the less sampled arms of the respective slicesΣ1, . . . ,Σℓ: for j ∈ {1, . . . , ℓ},

Zj ∈ argmin
i∈Σj

Ti(n).

Finally letZℓ+1 ∈ argmini∈{1,...,L}\{Jn} Ti(n).

Second step: ControllingTZj
(n), j ∈ {1, . . . , ℓ + 1}. We first prove that for anyj ∈ {1, . . . , ℓ},

3|Σj | ≥ L
1− 1

2
kj+1−1 . (8)

To do so let us note that, by definition ofkj+1, we have

2|Σj | ≥
∣∣∣
{

i : µL + ∆L/L1/2kj

< µi ≤ µL + ∆L/L1/2kj+1−1
}∣∣∣

≥
∣∣∣
{

i : µi ≤ µL + ∆L/L1/2kj+1−1
}∣∣∣− (|Σ1| + . . . + |Σj−1|).

Now remark that, by definition again, we have|Σ1| + . . . + |Σj−1| ≤ (2−(j−1) + . . . + 2−1)|Σj | ≤ |Σj |.
Thus we obtain3|Σj | ≥

∣∣∣
{

i : µi ≤ µL + ∆L/L1/2kj+1−1
}∣∣∣. We finish the proof of (8) with the following



calculation, which makes use of (7). For anyv ≥ 1,

|{i : µi ≤ µL + ∆L/v}| = |{i : ∆i ≥ ∆L(1 − 1/v)}|

≥
∣∣∣∣∣

{
i :

√
i

L
∆L ≥ ∆L(1 − 1/v)

}∣∣∣∣∣

=
∣∣{i : i ≥ L(1 − 1/v)2

}∣∣ ≥ L

(
1 − (1 − 1/v)2

)
≥ L/v.

Now (8) directly entails (since a minimum is smaller than an average), forj ∈ {1, . . . , ℓ},

TZj
(n) ≤ 3L

1

2
kj+1−1 −1 ∑

i∈Σj

Ti(n). (9)

Besides, sinceZℓ+1 is the less drawn arm amongL − 1 arms, we trivially have

TZℓ+1
(n) ≤ n

L − 1
. (10)

Third step: A change of measure.Let ν′ = νL ⊗ ν2 ⊗ · · · ⊗ νK be a modified product distribution where
we replaced the best distribution byνL. Now let us consider the event

Cn =
{
∀t ∈{1, . . . , n}, i ∈ {2, . . . , L}, j ∈ {1, . . . , L},

K̂Li,t(νi, νj) ≤ t KL(νi, νj) + on and K̂L1,t(νL, νj) ≤ t KL(νL, νj) + on

}
,

whereon = 2 log(p−1)
√

n log(2L). From Hoeffding’s maximal inequality, we havePν′(Cn) ≥ 1/2 (see
Appendix B). We thus have

∑
1≤z1,...,zℓ+1≤L Pν′

(
Cn ∩ {Z1 = z1, . . . , Zℓ+1 = zℓ+1}

)
≥ 1/2. Moreover

note thatZ1, . . . , Zℓ are all distinct. Thus there existℓ + 1 constantsz1, . . . , zℓ+1 such that, forAn =
Cn ∩ {Z1 = z1, . . . , Zℓ+1 = zℓ+1}, we have

Pν′(An) ≥ 1

2L × L!
. (11)

Since, by definitionZℓ+1 6= Jn, we have

An ⊂ {Jn 6= zℓ+1}. (12)

In the following we treat differently the caseszℓ+1 = 1 andzℓ+1 6= 1. First, let us assume thatzℓ+1 = 1.
Then, an application of (6) and (12) directly gives, by definition of An,

en(ν) = Pν(Jn 6= 1) = Eν′1Jn 6=1 exp

(
− K̂L1,T1(n)(νL, ν1)

)

≥ Eν′1An
exp

(
− K̂L1,T1(n)(νL, ν1)

)

≥ Eν′1An
exp

(
− on − TZℓ+1

(n)KL(νL, ν1)

)

≥ 1

2L × L!
exp

(
− on − n

L − 1
KL(νL, ν1)

)
,

where we used (10) and (11) for the last equation. Now, for anyp, q ∈ [0, 1], the KL divergence between
Bernoulli distributions of parametersp andq satisfies

KL(Ber(p), Ber(q)) ≤ (p − q)2

q(1 − q)
. (13)

This can be seen by usinglog u ≤ u− 1 on the two logarithmic terms inKL(Ber(p), Ber(q)). In particular,

it impliesKL(νL, ν1) ≤ ∆2
L

p(1−p) , which concludes the proof in the casezℓ+1 = 1.
Assume now thatzℓ+1 6= 1. In this case we prove that the lower bound holds for a well defined permuted

product distributioñν of ν. We define it as follows. Letm be the smallestj ∈ {1, . . . , ℓ + 1} such that
zm = zℓ+1. Now we set̃ν as follows: ν̃zm

= ν1, ν̃zm−1
= νzm

, . . ., ν̃z1
= νz2

, ν̃1 = νz1
, andν̃j = νj for

other values ofj in {1, . . . ,K}. Remark that̃ν is indeed the result of a permutation of the distributions ofν.
Again, an application of (6) and (12) gives, by definition ofAn,



en(ν̃) = Pν̃(Jn 6= zm)

= Eν′1Jn 6=zm
exp

(
− K̂L1,T1(n)(νL, νz1

) −
m−1∑

j=1

K̂Lzj ,Tzj
(n)(νzj

, νzj+1
) − K̂Lzm,Tzm (n)(νzm

, νz1
)

)

≥ Eν′1An
exp

(
− (m + 1)on − T1(n)KL(νL, νZ1

) −
m−1∑

j=1

TZj
(n)KL(νZj

, νZj+1
)

− TZm
(n)KL(νZm

, νZ1
)

)
. (14)

From (13), the definition ofΣj , and since the parameters of the Bernoulli distributions are in [p, 1 − p],

we haveKL(νL, νZ1
) ≤ 1

p(1−p)
∆2

L

L , KL(νZm
, νZ1

) ≤ ∆2
L

p(1−p) , and for anyj ∈ {1, . . . ,m − 1},

KL(νZj
, νZj+1

) ≤ 1

p(1 − p)

(
∆L

L1/2kj+1

)2

.

Reporting these inequalities, as well as (9), (10) and (11) in (14), we obtain:

en(ν̃) ≥ Eν′1An
exp

(
− (m + 1)on − 3

∆2
L

p(1 − p)L

(
T1(n) +

m−1∑

j=1

∑

i∈Σj

Ti(n) +
nL

3(L − 1)

))

≥ 1

2L × L!
exp

(
− L on − 3n

∆2
L

p(1 − p)L

(
1 +

L

3(L − 1)

))

SinceL ≤ K and2K × K! ≤ exp
(
2K log(K)

)
and from the definitions ofon andL, we obtain

en(ν̃) ≥ exp

(
−2K log(K) − 2K log(p−1)

√
n log(2K) − 5

n

p(1 − p)H2

)
,

which concludes the proof.

6 Proofs

6.1 Proof of Inequalities(1)

Let log(K) = 1
2 +
∑K

i=2
1
i . Remark thatlog(K+1)−1/2 ≤ log(K) ≤ log(K)+1/2 ≤ log(2K). Precisely,

we will prove
H2 ≤ H1 ≤ log(K) H2,

which is tight to the extent that the right inequality is an equality when for some0 < c ≤ 1/
√

K, we have
∆(i) =

√
ic for anyi 6= i∗, and the left inequality is an equality if all∆i’s are equal.

Proof: The left inequality follows from: for anyi ∈ {1, . . . ,K}, H1 =
∑K

k=1 ∆−2
(k) ≥

∑i
k=1 ∆−2

(i) ≥ i∆−2
(i) .

The right inequality directly comes from
∑K

i=1 ∆−2
(i) = ∆−2

(2)+
∑K

i=2
1
i i∆

−2
(i) ≤ log(K)maxi∈{1,...,K} i∆−2

(i) .

6.2 Proof of Theorem 1

First step. Let us consider the event

ξ =

{
∀i ∈ {1, . . . ,K}, s ∈ {1, . . . , n}, |X̂i,s − µi| <

1

5

√
a

s

}
.

From Hoeffding’s inequality and a union bound, we haveP(ξ) ≥ 1− 2nK exp
(
− 2a

25

)
. In the following, we

prove that on the eventξ we haveJn = i∗, which concludes the proof. SinceJn is the empirical best arm,
and given that we are onξ, it is enough to prove that

1

5

√
a

Ti(n)
≤ ∆i

2
,∀i ∈ {1, . . . ,K},

or equivalently:

Ti(n) ≥ 4

25

a

∆2
i

,∀i ∈ {1, . . . ,K}. (15)



Second step.Firstly we prove by induction that

Ti(t) ≤
36

25

a

∆2
i

+ 1,∀i 6= i∗. (16)

It is obviously true at timet = 1. Now assume that the formula is true at timet − 1. If It 6= i then
Ti(t) = Ti(t − 1) and the formula still holds. On the other hand, ifIt = i, then in particular it means
thatBi,Ti(t−1) ≥ Bi∗,Ti∗ (t−1). Moreover, since we are onξ, we haveBi∗,Ti∗ (t−1) ≥ µ∗ andBi,Ti(t−1) ≤
µi + 6

5

√
a

Ti(t−1) . Thus, we have65
√

a
Ti(t−1) ≥ ∆i. By usingTi(t) = Ti(t − 1) + 1, we obtain (16).

Now we prove an other useful formula:

Ti(t) ≥
4

25
min

(
a

∆2
i

,
25

36
(Ti∗(t) − 1)

)
,∀i 6= i∗. (17)

With the same inductive argument as the one to get equation (16), we only need to prove that this formula
holds whenIt = i∗. By definition of the algorithm, and since we are onξ, whenIt = i∗ we have for alli:

µ∗ +
6

5

√
a

Ti∗(t − 1)
≥ µi +

4

5

√
a

Ti(t − 1)
,

which implies

Ti(t − 1) ≥ 16

25

a
(
∆i + 6

5

√
a

Ti∗ (t−1)

)2 .

We then obtain (17) by usingu + v ≤ 2max(u, v), Ti(t) = Ti(t − 1) andTi∗(t − 1) = Ti∗(t) − 1.
Third step. Recall that we want to prove equation (15). From (17), we onlyhave to show that

25

36
(Ti∗(n) − 1) ≥ a

∆2
i∗

,

where we recall that∆i∗ is the minimal gap∆i∗ = mini6=i∗ ∆i. Using equation (16) we obtain:

Ti∗(n) − 1 = n − 1 −
∑

i6=i∗

Ti(n) ≥ n − K − 36

25
a
∑

i6=i∗

∆−2
i ≥ 36

25
a∆−2

i∗ ,

where the last inequality uses3625H1a ≤ n − K. This concludes the proof.

7 Experiments
We propose a few simple experiments to illustrate our theoretical analysis. As a baseline comparison we
use the Hoeffding Race algorithm, see Maron and Moore (1993), and the uniform strategy, which pulls
equally often each arm and recommend the arm with the highestempirical mean, see Bubeck et al. (2009) for
its theoretical analysis. We consider only Bernoulli distributions, and the optimal arm always has parameter
1/2. Each experiment corresponds to a different situation for the gaps, they are either clustered in few groups,
or distributed according to an arithmetic or geometric progression. In each experiment we choose the number
of samples (almost) equal toH1 (except for the last experiment where we run it twice, the second time with
2H1 samples). If our understanding of the meaning ofH1 is sound, in each experiment the strategies SR and
UCB-E should be able to find the best arm with a reasonable probability (which should be roughly of the
same order in each experiment). We report our results in Figure 5. The parameters for the experiments are as
follows:

– Experiment 1: One group of bad arms,K = 20, µ2:20 = 0.4 (meaning for anyj ∈ {2, . . . , 20}, µj = 0.4)
– Experiment 2: Two groups of bad arms,K = 20, µ2:6 = 0.42, µ7:20 = 0.38.
– Experiment 3: Geometric progression,K = 4, µi = 0.5 − (0.37)i, i ∈ {2, 3, 4}.
– Experiment 4:6 arms divided in three groups,K = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.
– Experiment 5: Arithmetic progression,K = 15, µi = 0.5 − 0.025i, i ∈ {2, . . . , 15}.
– Experiment 6: Two good arms and a large group of bad arms,K = 20, µ2 = 0.48, µ3:20 = 0.37.
– Experiment 7: Three groups of bad arms,K = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

The different graphics should be read as follows: Each bar represents a different algorithm and the bar’s
height represents the probability of error of this algorithm. The correspondence between algorithms and bars
is the following:

– Bar 1: Uniform sampling strategy.
– Bar 2-4: Hoeffding Race algorithm with parametersδ = 0.01, 0.1, 0.3.
– Bar 5: Successive Rejects strategy.
– Bar 6-9: UCB-E with parametera = cn/H1 where respectivelyc = 1, 2, 4, 8.
– Bar 10-14: Adaptive UCB-E (see Figure 4) with parametersc = 1/4, 1/2, 1, 2, 4.



Parameter: exploration ratec > 0.

Definitions: Fork ∈ {1, . . . , K − 1}, let nk =
˚

1

log(K)

n−K
K+1−k

ˇ

, t0 = 0, t1 = Kn1, and

for k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.

For i ∈ {1, . . . , K} anda > 0, let Bi,s(a) = bXi,s +
p

a
s

for s ≥ 1 andBi,0 = +∞.

Algorithm: For each phasek = 0, 1, . . . , K − 1:
Let bH1,k = K if k = 0, and otherwise

bH1,k = max
K−k+1≤i≤K

ib∆−2
<i>,

where b∆i =
`

max1≤j≤K
bXj,Tj(tk)

´

− bXi,Ti(tk) and< i > is an ordering such that
b∆<1> ≤ . . . ≤ b∆<K>.

For t = tk + 1, . . . , tk+1:
Draw It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1)(cn/ bH1,k).

Recommendation:Let Jn ∈ argmaxi∈{1,...,K}
bXi,Ti(n).

Figure 4: Adaptive UCB-E algorithm. Its intuitive justification goes as follows: The time pointstk corre-
spond to the moments where the Successive Rejects algorithmwould dismiss an arm. Intuitively, in light
of Theorem 3, one can say that at timetk a good algorithm should have reasonable approximation of the
gaps between the best arm and thek worst arms, that is the quantities∆(K−k+1), . . . ,∆(K). Now with these
quantities, one can build a lower estimate ofH2 and thus also ofH1. We use this estimate between the time
pointstk andtk+1 to tune the parametera of UCB-E.

8 Conclusion

This work has investigated strategies for finding the best arm in a multi-armed bandit problem. It has proposed
a simple parameter-free algorithm, SR, that attains optimal guarantees up to a logarithmic term (Theorem 2
and Theorem 4). A precise understanding of both SR (Theorem 3) and a UCB policy (Theorem 1) lead
us to define a new algorithm, Adaptive UCB-E. It comes withoutguarantee of optimal rates (see end of
Section 3), but performs better than SR in practice (forc = 1, Adaptive UCB-E outperformed SR on all the
experiments we did, even those done to make it fail). One possible explanation is that SR is too static: it does
not implement more data driven arguments such as: in a phase,a surviving arm performing much worse than
the other ones is still drawn until the end of the phase even ifit is clear that it is the next dismissed arm.

Extensions of this work may concentrate on the following problems. (i) What is a good measure of
hardness when one takes into account the (empirical) variances? Do we have a good scaling with respect
to the variance with the current algorithms or do we need to modify them ? (ii) Is it possible to derive a
natural anytime version of Successive Rejects (without using a doubling trick)? (iii) Is it possible to close
the logarithmic gap between the lower and upper bounds? (iv)How should we modify the algorithm and the
analysis if one is interested in recommending the topm actions instead of a single one?
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Figure 5: These results support our theoretical findings in the following sense: Despite the fact that the
experiments are very different, one can see that since we usea number of samples (almost) equal to the
hardnessH1, in all of them we get a probability of error of the same order,and moreover this probability is
small enough to say that we identified the best arm. Note that the Successive Rejects algorithm represents in
all cases a substantial improvement over both the naive uniform strategy and Hoeffding Race. These results
also justify experimentally the algorithm Adaptive UCB-E,indeed one can see that with the constantc = 1
we obtain better results than SR in all experiments, even in experiment 6 which was designed to be a difficult
instance of Adaptive UCB-E.



A Lower bound for UCB-E

Theorem 5 If ν2, . . . , νK are Dirac distributions concentrated at12 and ifν1 is the Bernoulli distribution of
parameter3/4, the UCB-E algorithm satisfies4Ern = en ≥ 4−(4a+1).

Proof: Consider the eventE on which the reward obtained from the firstm = ⌈4a⌉ draws of arm1 are equal
to zero. On this event of probability4−m, UCB-E will not draw arm1 more thanm times. Indeed, if it is
drawnm times, it will not be drawn another time sinceB1,m ≤ 1

2 < B2,s for anys. On the eventE , we have
Jn 6= 1.

B Application of Hoeffding’s maximal inequality in the proo f of Theorem 4

Let i ∈ {2, . . . , L} andj ∈ {1, . . . , L}. First note that, by definition ofν′ and sincei 6= 1,

Eν′K̂Li,t(νi, νj) = t KL(νi, νj).

Sinceνi = Ber(µi) andνj = Ber(µj), with µi, µj ∈ [p, 1 − p], we have
∣∣∣∣log

(
dνi(Xi,t)

dνj(Xi,t)

)∣∣∣∣ ≤ log(p−1).

From Hoeffding’s maximal inequality, see e.g. (Cesa-Bianchi and Lugosi, 2006, Section A.1.3), we have
to bound almost surely the quantity, withPν′-probability at least1 − 1

2L2 , we have for allt ∈ {1, . . . , n},

K̂Li,t(νi, νj) − t KL(νi, νj) ≤ 2 log(p−1)

√
log(L2)n

2
.

Similarly, with Pν′-probability at least1 − 1
2L2 , we have for allt ∈ {1, . . . , n},

K̂L1,t(νL, νj) − t KL(νL, νj) ≤ 2 log(p−1)

√
log(L2)n

2
.

A simple union bound argument then givesPν′(Cn) ≥ 1/2.


