Supplementary material to "Online Optimization in \mathcal{X}-Armed Bandits"

Sébastien Bubeck
INRIA Lille, SequeL project, France
sebastien.bubeck@inria.fr

Gilles Stoltz

Ecole Normale Supérieure and HEC Paris
gilles.stoltz@ens.fr

Rémi Munos
INRIA Lille, SequeL project, France
remi.munos@inria.fr

Csaba Szepesvári

Department of Computing Science, University of Alberta
szepesva@cs.ualberta.ca

A Proof of Lemma 1

Proof. We denote by $x_{h, i}^{*}(\delta)$ an element of $\mathcal{P}_{h, i}$ such that

$$
f\left(x_{h, i}^{*}(\delta)\right) \geq f_{h, i}^{*}-\delta
$$

By the weakly Lipschitz property, it then follows that for all $y \in \mathcal{P}_{h, i}$,
$f^{*}-f(y) \leq f^{*}-f\left(x_{h, i}^{*}(\delta)\right)+\max \left\{f^{*}-f\left(x_{h, i}^{*}(\delta)\right), \ell\left(x_{h, i}^{*}(\delta), y\right)\right\} \leq \Delta_{h, i}+\delta+\max \left\{\Delta_{h, i}+\delta, \operatorname{diam} \mathcal{P}_{h, i}\right\}$.
Letting $\delta \rightarrow 0$ and substituting the bounds on the suboptimality and on the diameter of $\mathcal{P}_{h, i}$ concludes the proof.

B Proof of Lemma 2

Proof. We consider a given round $t \in\{1, \ldots, n\}$. If $\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)$, then this is because the child of $\left(k, i_{k}^{*}\right)$ on the path to (h, i) had a better B-value than its brother $\left(k+1, i_{k+1}^{*}\right)$. Since by definition, $B-$ values can only decrease on a path, this entails that $B_{h, i}(t) \geq B_{k+1, i_{k+1}^{*}}(t)$. This is turns implies, again by definition of the B-values, that $U_{h, i}(t) \geq B_{k+1, i_{k+1}^{*}}(t)$. Thus,

$$
\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\} \subset\left\{U_{h, i}(t) \geq B_{k+1, i_{k+1}^{*}}(t)\right\} \subset\left\{U_{h, i}(t) \geq f^{*}\right\} \cup\left\{B_{k+1, i_{k+1}^{*}}(t) \leq f^{*}\right\}
$$

But, once again by definition of B-values,

$$
\left\{B_{k+1, i_{k+1}^{*}}(t) \leq f^{*}\right\} \subset\left\{U_{k+1, i_{k+1}^{*}}(t) \leq f^{*}\right\} \cup\left\{B_{k+2, i_{k+2}^{*}}(t) \leq f^{*}\right\}
$$

and the argument can be iterated. Since at round t not more than t nodes have been played (including the suboptimal (h, i)), we know that $\left(t, i_{t}^{*}\right)$ and its descendants have U-values and B-values equal to $+\infty$. We thus have proved the inclusion

$$
\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\} \subset\left\{U_{h, i}(t) \geq f^{*}\right\} \cup\left(\left\{B_{k+1, i_{k+1}^{*}}(t) \leq f^{*}\right\} \cup \ldots \cup\left\{B_{t-1, i_{t-1}^{*}}(t) \leq f^{*}\right\}\right)
$$

The result follows by simply distinguishing whether $N_{h, i}(t)>u$ (which can only happen if $t \geq u$) or not.

C Proof of Lemma 3

Proof. $U_{h, i} \leq f^{*}$ is not true when node (h,i) was never pulled (in this case, by definition, $\left.U_{h, i}(n)=+\infty\right)$. We may thus conduct the study in the sequel on the event $\left\{N_{h, i}(n) \geq 1\right\}$.

Lemma 1 with $c=0$ gives that $f^{*}-f(x) \leq \nu_{1} \rho^{h}$ holds for any arm $x \in \mathcal{P}_{h, i}$. Hence,

$$
\sum_{t=1}^{n}\left(f\left(X_{t}\right)+\nu_{1} \rho^{h}-f^{*}\right) \mathbb{I}_{\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\}} \geq 0
$$

and therefore,

$$
\begin{aligned}
\mathbb{P} & \left\{U_{h, i}(n) \leq f^{*} \text { and } N_{h, i}(n) \geq 1\right\} \\
& =\mathbb{P}\left\{\widehat{\mu}_{h, i}(n)+\sqrt{\frac{2 \ln n}{N_{h, i}(n)}}+\nu_{1} \rho^{h} \leq f^{*} \text { and } N_{h, i}(n) \geq 1\right\} \\
& =\mathbb{P}\left\{N_{h, i}(n) \widehat{\mu}_{h, i}(n)+N_{h, i}(n)\left(\nu_{1} \rho^{h}-f^{*}\right) \leq-\sqrt{N_{h, i}(n) 2 \ln n} \text { and } N_{h, i}(n) \geq 1\right\} \\
& \leq \mathbb{P}\left\{\sum_{t=1}^{n}\left(f\left(X_{t}\right)-Y_{t}\right) \mathbb{I}_{\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\}} \geq \sqrt{N_{h, i}(n) 2 \ln n} \text { and } N_{h, i}(n) \geq 1\right\}
\end{aligned}
$$

We take care of the last term with a union bound and the Hoeffding-Azuma inequality for martingale differences. To do this properly we need to define a sequence of (random) times when arms in $\mathcal{C}(h, i)$ were pulled:

$$
T_{j}=\min \left\{t: N_{h, i}(t)=j\right\}, \quad j=1,2, \ldots
$$

Note that $1 \leq T_{1}<T_{2}<\ldots$ and hence it holds that $T_{j} \geq j$. With these notation, $\widetilde{X}_{j}=X_{T_{j}}$ is the j-th arm pulled in a domain corresponding to $\mathcal{C}(h, i), \widetilde{Y}_{j}=Y_{T_{j}}$ is the corresponding reward, and

$$
\begin{aligned}
& \mathbb{P}\left\{\sum_{t=1}^{n}\left(f\left(X_{t}\right)-Y_{t}\right) \mathbb{I}_{\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\}} \geq \sqrt{N_{h, i}(n) 2 \ln n} \text { and } N_{h, i}(n) \geq 1\right\} \\
& \\
& =\mathbb{P}\left\{\sum_{j=1}^{N_{h, i}(n)}\left(f\left(\widetilde{X}_{j}\right)-\widetilde{Y}_{j}\right) \geq \sqrt{N_{h, i}(n) 2 \ln n} \text { and } N_{h, i}(n) \geq 1\right\} \\
& \quad \leq \sum_{t=1}^{n} \mathbb{P}\left\{\sum_{j=1}^{t}\left(f\left(\widetilde{X}_{j}\right)-\widetilde{Y}_{j}\right) \geq \sqrt{2 t \ln n}\right\}
\end{aligned}
$$

where we used a union bound to get the last inequality.
We now prove that

$$
Z_{t}=\sum_{j=1}^{t}\left(f\left(\tilde{X}_{j}\right)-\tilde{Y}_{j}\right)
$$

is a martingale difference sequence (with respect to the filtration it generates). This follows, via optional skipping (see [?], Theorem 2.3), from the fact that

$$
\sum_{t=1}^{n}\left(f\left(X_{t}\right)-Y_{t}\right) \mathbb{I}_{\left\{\left(H_{t}, I_{t}\right) \in \mathcal{C}(h, i)\right\}}
$$

is a martingale, with respect to the filtration $\mathcal{F}_{t}=\sigma\left(X_{1}, Y_{1}, \ldots, X_{t}, Y_{t}\right)$, and that $\left\{T_{j}=k\right\} \in \mathcal{F}_{k-1}$. Applying the Hoeffding-Azuma inequality (using the bounded ranges), we then get, for each $t \geq 1$,

$$
\mathbb{P}\left\{\sum_{j=1}^{t}\left(f\left(\widetilde{X}_{j}\right)-\widetilde{Y}_{j}\right) \geq \sqrt{2 t \ln n}\right\} \leq \exp \left(-\frac{2(\sqrt{2 t \ln n})^{2}}{t}\right)=n^{-4}
$$

which concludes the proof.

D Proof of Lemma 4

Proof. Remark that for the u mentioned in the statement of the lemma,

$$
\sqrt{\frac{2 \ln t}{u}}+\nu_{1} \rho^{h} \leq\left(\Delta_{h, i}+\nu_{1} \rho^{h}\right) / 2
$$

and therefore,

$$
\begin{aligned}
\mathbb{P} & \left\{U_{h, i}(t)>f^{*} \text { and } N_{h, i}(t)>u\right\} \\
& =\mathbb{P}\left\{\widehat{\mu}_{h, i}(t)+\sqrt{\frac{2 \ln t}{N_{h, i}(t)}}+\nu_{1} \rho^{h}>f_{h, i}^{*}+\Delta_{h, i} \text { and } N_{h, i}(t)>u\right\} \\
& \leq \mathbb{P}\left\{\widehat{\mu}_{h, i}(t)>f_{h, i}^{*}+\frac{\Delta_{h, i}-\nu_{1} \rho^{h}}{2} \text { and } N_{h, i}(t)>u\right\} \\
& \leq \mathbb{P}\left\{N_{h, i}(t)\left(\widehat{\mu}_{h, i}(t)-f_{h, i}^{*}\right)>\frac{\Delta_{h, i}-\nu_{1} \rho^{h}}{2} u \text { and } N_{h, i}(t)>u\right\} \\
& =\mathbb{P}\left\{\sum_{s=1}^{t}\left(Y_{s}-f_{h, i}^{*}\right) \mathbb{I}_{\left\{\left(H_{s}, I_{s}\right) \in \mathcal{C}(h, i)\right\}}>\frac{\Delta_{h, i}-\nu_{1} \rho^{h}}{2} u \text { and } N_{h, i}(t)>u\right\} \\
& \leq \mathbb{P}\left\{\sum_{s=1}^{t}\left(Y_{s}-f\left(X_{s}\right)\right) \mathbb{I}_{\left\{\left(H_{s}, I_{s}\right) \in \mathcal{C}(h, i)\right\}}>\frac{\Delta_{h, i}-\nu_{1} \rho^{h}}{2} u \text { and } N_{h, i}(t)>u\right\} .
\end{aligned}
$$

Now it follows again by the optional skipping argument, the Hoeffding-Azuma inequality, and a union bound, that

$$
\begin{aligned}
& \mathbb{P}\left\{\sum_{s=1}^{t}\left(Y_{s}-f\left(X_{s}\right)\right) \mathbb{I}_{\left\{\left(H_{s}, I_{s}\right) \in \mathcal{C}(h, i)\right\}}>\frac{\Delta_{h, i}-\nu_{1} \rho^{h}}{2} u \text { and } N_{h, i}(t)>u\right\} \\
& \quad \leq \sum_{s=u+1}^{t} \exp \left(-\frac{2}{s}\left(\frac{\left(\Delta_{h, i}-\nu_{1} \rho^{h}\right) u}{2}\right)^{2}\right) \leq t \exp \left(-\frac{1}{2} u\left(\Delta_{h, i}-\nu_{1} \rho^{h}\right)^{2}\right) \leq t n^{-4}
\end{aligned}
$$

(where we used the stated bound on u to obtain the last inequality).

E Proof of Theorem 2

We only deal with the case of deterministic strategies. The extension to randomized strategies can be done using Fubini's theorem.

For $\eta \in[0,1 / 4]$ and $x^{*} \in \mathcal{X}$, we denote by $f_{\eta, x^{*}}$ the mapping defined by

$$
f_{\eta, x^{*}}(x)=\max \left\{\eta-\ell\left(x, x^{*}\right), 0\right\}
$$

for all $x \in \mathcal{X}$ and by $M_{\eta, x^{*}}$ the environment defined by

$$
M_{\eta, x^{*}}(x)=\operatorname{Ber}\left(\frac{1}{2}+f_{\eta, x^{*}}(x)\right)
$$

for all $x \in \mathcal{X}$. We consider K points x_{1}, \ldots, x_{K} in \mathcal{X} such that the balls $B_{x_{j}, \eta}$ with radius η centered at each of the x_{j} are non-overlapping. Note that $B_{x_{j}, \eta}$ is the support of $f_{\eta, x^{*}}$. In addition, the mean functions of all the defined environments are 1 -Lipschitz and thus are weakly Lipschitz.
We will also need to consider environments on a finite set of arms $\{1, \ldots, K+1\}$. We construct K different product-distributions $\nu_{1}, \nu_{2}, \ldots, \nu_{K}$ for the arms $\{1, \ldots, K+1\}$ as follows. For a given ν_{j}, the reward distribution associated to the i-th arm is $\nu_{j, i}=\operatorname{Ber}(1 / 2)$ for all $i \neq j$ and $\nu_{j, j}=\operatorname{Ber}(1 / 2+\eta)$.
To each (deterministic) strategy φ on \mathcal{X}, we associate a random strategy ψ on the finite set of arms $\{1, \ldots, K+1\}$ as follows. Let $t \geq 1$. Since φ is deterministic it associates to each sequence of rewards $\left\{r_{1}, . ., r_{t-1}\right\} \in\{0,1\}^{t-1}$ a unique sequence $\left\{x_{1}, . ., x_{t}\right\} \in \mathcal{X}^{t}$ of arms that φ would have pull under this sequence of rewards. With a slight abuse of notation we can write $\varphi\left(r_{1}, . ., r_{t-1}\right)=\left(x_{1}, . ., x_{t}\right)$. Now assume that the historic of ψ at time t is $X_{1}, R_{1}, \ldots, X_{t-1}, R_{t-1}$ and let $\left(X_{1}^{\prime}, . ., X_{t}^{\prime}\right)=\varphi\left(R_{1}, . ., R_{t-1}\right)$. We then define

$$
\begin{array}{ll}
\psi_{t}=\delta_{K+1} & \text { if } \quad X_{t}^{\prime} \notin \cup_{j} B_{x_{j}, \eta} \\
\psi_{t}=\left(1-\frac{\ell\left(X_{t}^{\prime}, x_{j}\right)}{\eta}\right) \delta_{x_{j}}+\frac{\ell\left(X_{t}^{\prime}, x_{j}\right)}{\eta} \delta_{K+1} & \text { if } \quad X_{t}^{\prime} \in B_{x_{j}, \eta}
\end{array}
$$

where δ_{j} is a dirac distribution on j.
We now want to prove that the distributions of the regrets for φ under $M_{\eta, x_{j}}$ and for ψ under ν_{j} are equal for all $j=1, \ldots, K$. On the one hand, the expectations of the best arms are $1 / 2+\eta$ under all these environments. On the other hand we can prove recursively that for any $\left\{r_{1}, . ., r_{t}\right\} \in\{0,1\}^{t}$,

$$
\mathbb{P}\left(R_{1}=r_{1}, . ., R_{t}=r_{t}\right)=\mathbb{P}\left(R_{1}^{\prime}=r_{1}, . ., R_{t}^{\prime}=r_{t}\right)
$$

where R_{1}, \ldots, R_{t} (respectively $R_{1}^{\prime}, \ldots, R_{t}^{\prime}$) is the sequence of rewards obtained by φ under $M_{\eta, x_{j}}$ (respectively ψ under ν_{j}). The result is easy to check for $t=1$ and for $t>1$ it follows from

$$
\mathbb{P}\left(R_{1}=r_{1}, . ., R_{t}=r_{t}\right)=\mathbb{P}\left(R_{t}=r_{t} \mid R_{1}=r_{1}, . ., R_{t}=r_{t}\right) \mathbb{P}\left(R_{1}=r_{1}, . ., R_{t-1}=r_{t-1}\right)
$$

and the same calculation for R_{t}^{\prime}.
As a consequence, the regrets $R_{n}(\varphi)$ and $R_{n}(\psi)$ have the same expectation, that is, for all $j=1, \ldots, K$,

$$
\begin{equation*}
\mathbb{E}_{j} R_{n}(\varphi)=\mathbb{E}_{j}^{\prime} R_{n}(\psi) \tag{1}
\end{equation*}
$$

where \mathbb{E}_{j} denotes the expectation under $M_{\eta, x_{j}}$ and \mathbb{E}_{j}^{\prime} the one under ν_{j}.
But it can be extracted from the proof of the lower bound of [?, Section 6.9] that for all strategies ψ^{\prime}, all $\eta \in[0,1 / 4]$, and all integers K,

$$
\begin{equation*}
\max _{j=1, \ldots, K} \mathbb{E}_{j}^{\prime} R_{n}\left(\psi^{\prime}\right) \geq \eta n\left(1-\frac{1}{K}-\eta \sqrt{4 \ln (4 / 3) \frac{n}{K}}\right) \tag{2}
\end{equation*}
$$

By the assumption on packing dimension, there exists $c>0$ such that $K=c \eta^{-d} \geq 2$ is a suitable choice. Substituting this value, we get

$$
\max _{j=1, \ldots, K} \mathbb{E}_{j} R_{n}(\varphi)=\max _{j=1, \ldots, K} \mathbb{E}_{j}^{\prime} R_{n}(\psi) \geq \eta n\left(\frac{1}{2}-\eta^{1+d / 2} \sqrt{\frac{4 \ln (4 / 3)}{c} n}\right)
$$

The left-hand side is smaller than the maximal regret with respect to all weak-Lipschitz environments; the right-hand side can be optimized over $\eta \leq 1 / 4$ to get the claimed bound, by taking

$$
\eta=\left(\frac{1}{4} \sqrt{\frac{c}{4 \ln (4 / 3)}}\right)^{2 /(d+2)} n^{-1 /(d+2)} .
$$

