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Abstract
This work deals with four classical prediction settings, namely full information, bandit, label effi-
cient and bandit label efficient as well as four different notions of regret: pseudo-regret, expected re-
gret, high probability regret and tracking the best expert regret. We introduce a new forecaster, INF
(Implicitly Normalized Forecaster) based on an arbitrary functionψ for which we propose a unified
analysis of its pseudo-regret in the four games we consider.In particular, forψ(x) = exp(ηx)+ γ

K ,
INF reduces to the classical exponentially weighted average forecaster and our analysis of the
pseudo-regret recovers known results while for the expected regret we slightly tighten the bounds.
On the other hand withψ(x) =

( η
−x

)q
+ γ

K , which defines a new forecaster, we are able to remove
the extraneous logarithmic factor in the pseudo-regret bounds for bandits games, and thus fill in a
long open gap in the characterization of the minimax rate forthe pseudo-regret in the bandit game.
We also provide high probability bounds depending on the cumulative reward of the optimal action.

Finally, we consider the stochastic bandit game, and prove that an appropriate modification of
the upper confidence bound policy UCB1 (Auer et al., 2002a) achieves the distribution-free optimal
rate while still having a distribution-dependent rate logarithmic in the number of plays.

Keywords: Bandits (adversarial and stochastic), regret bound, minimax rate, label efficient, upper
confidence bound (UCB) policy, online learning, predictionwith limited feedback.

1. Introduction

This section starts by defining the prediction tasks, the different regret notions that we will consider,
and the different adversaries of the forecaster. We will then recap existing lower and upper regret
bounds for the different settings, and give an overview of our contributions.

1.1 The Four Prediction Tasks

We consider a general prediction game where at each stage, a forecaster (or decision maker) chooses
one action (or arm), and receives a reward from it. Then the forecaster receives a feedback about
the rewards which he can use to make his choice at the next stage. His goalis to maximize his
cumulative gain. In the simplest version, after choosing an arm the forecaster observes the rewards
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Parameters: the number of arms (or actions)K and the number of roundsn with
n≥ K ≥ 2.

For each roundt = 1,2, . . . ,n

(1) The forecaster chooses an armIt ∈ {1, . . . ,K}, possibly with the help of an
external randomization.

(2) Simultaneously the adversary chooses a gain vectorgt = (g1,t , . . . ,gK,t) ∈
[0,1]K (see Section 8 for loss games or signed games).

(3) The forecaster receives the gaingIt ,t (without systematically observing it). He
observes

– the reward vector(g1,t , . . . ,gK,t) in thefull information game,

– the reward vector(g1,t , . . . ,gK,t) if he asks for it with the global constraint
that he is not allowed to ask it more thanm times for some fixed integer
number 1≤ m≤ n. This prediction game is thelabel efficientgame,

– only gIt ,t in thebandit game,

– only his obtained rewardgIt ,t if he asks for it with the global constraint
that he is not allowed to ask it more thanm times for some fixed integer
number 1≤ m≤ n. This prediction game is thelabel efficient bandit
game.

Goal : The forecaster tries to maximize his cumulative gain∑n
t=1gIt ,t .

Figure 1: The four prediction tasks considered in this work.

for all arms, this is the so called full information game. In the label efficient game, originally
proposed by Helmbold and Panizza (1997), after choosing its action at a stage, the forecaster decides
whether to ask for the rewards of the different actions at this stage, knowing that he is allowed to do
it a limited number of times. Another classical setting is the bandit game where the forecaster only
observes the reward of the arm he has chosen. In its original version (Robbins, 1952), this game
was considered in a stochastic setting, that is, the nature draws the rewards from a fixed product-
distribution. Later it was considered in an adversarial framework (Aueret al., 1995), where there
is an adversary choosing the rewards on the arms. A combination of the two previous settings is
the label efficient bandit game (György and Ottucśak, 2006), in which the only observed rewards
are the ones obtained and asked by the forecaster, with again a limitation on thenumber of possible
queries. These four games are described more precisely in Figure 1. Their Hannan consistency has
been considered in Allenberg et al. (2006) in the case of unbounded losses. Here we will focus on
regret upper bounds and minimax policies for bounded losses.

1.2 Regret and Pseudo-regret

A natural way to assess the performance of a forecaster is to compute hisregretwith respect to the
best action in hindsight (see Section 7 for a more general regret in whichwe compare to the best
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switching strategy having a fixed number of action-switches):

Rn = max
1≤i≤K

n

∑
t=1

(
gi,t −gIt ,t

)
.

A lot of attention has been drawn by the characterization of the minimax expected regret in the dif-
ferent games we have described. More precisely for a given game, letus write sup for the supremum
over all allowed adversaries and inf for the infimum over all forecaster strategies for this game. We
are interested in the quantity:

infsupERn,

where the expectation is with respect to the possible randomization of the forecaster and the adver-
sary. Another related quantity which can be easier to handle is thepseudo-regret:

Rn = max
1≤i≤K

E

n

∑
t=1

(
gi,t −gIt ,t

)
.

Note that, by Jensen’s inequality, the pseudo-regret is always smaller than the expected regret. In
Appendix D we discuss cases where the converse inequality holds (up to an additional term).

1.3 The Different Adversaries

The simplest adversary is the deterministic one. It is characterized by a fixed matrix ofnK rewards
corresponding to(gi,t)1≤i≤K,1≤t≤n. Another adversary is the “stochastic” one, in which the reward
vectors are independent and have the same distribution.1 This adversary is characterized by a dis-
tribution on [0,1]K, corresponding to the common distribution ofgt , t = 1, . . . ,n. A more general
adversary is the fully oblivious one, in which the reward vectors are independent. Here the adver-
sary is characterized byn distributions on[0,1]K corresponding to the distributions ofg1, . . . ,gn.
Deterministic and stochastic adversaries are fully oblivious adversaries.

An even more general adversary is the oblivious one, in which the only constraint on the ad-
versary is that the reward vectors are independent of the past decisions of the forecaster. The most
general adversary is the one who may choose the reward vectorgt as a function of the past decisions
I1, . . . , It−1 (non-oblivious adversary).

1.4 Known Regret Bounds

Table 1 recaps existing lower and upper bounds on the minimax pseudo-regret and the minimax
expected regret for general adversaries (i.e., possibly non-oblivious ones). For the first three lines,
we refer the reader to the book (Cesa-Bianchi and Lugosi, 2006) andreferences within, particularly
Cesa-Bianchi et al. (1997) and Cesa-Bianchi (1999) for the full information game, Cesa-Bianchi
et al. (2005) for the label efficient game, Auer et al. (2002b) for the bandit game and Gÿorgy and
Ottucśak (2006) for the label efficient bandit game. The lower bounds in the last line do not appear
in the existing litterature, but we prove them in this paper. Apart from the fullinformation game,
the upper bounds are usually proved on the pseudo-regret. The upper bounds on the expected regret
are obtained by using high probability bounds on the regret. The parameters of the algorithm in the

1. The term “stochastic” can be a bit misleading since the assumption is not just stochasticity but rather an i.i.d. as-
sumption.
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infsupRn infsupERn

Lower bound Upper bound Lower bound Upper bound
Full information game

√
nlogK

√
nlogK

√
nlogK

√
nlogK

Label efficient game n
√

logK
m n

√
logK

m n
√

logK
m n

√
logn

m

Bandit game
√

nK
√

nK logK
√

nK
√

nK logn

Bandit label efficient game n
√

K
m n

√
K logK

m n
√

K
m n

√
K logn

m

Table 1: Existing bounds (apart from the lower bounds in the last line whichare proved in this
paper) on the pseudo-regret and expected regret. Except for the full information game,
there are logarithmic gaps between lower and upper bounds.

latter bounds usually depend on the confidence levelδ that we want to obtain. Thus to derive bounds
on the expected regret we can not integrate the deviations but rather we have to takeδ of order 1/n,
which leads to the gaps involving log(n). Table 1 exhibits several logarithmic gaps between upper
and lower bounds on the minimax rate, namely:

•
√

log(K) gap for the minimax pseudo-regret in the bandit game as well as the label efficient
bandit game.

•
√

log(n) gap for the minimax expected regret in the bandit game as well as the label efficient
bandit game.

•
√

log(n)/ log(K) gap for the minimax expected regret in the label efficient game,

1.5 Contributions of This Work

We reduce the above gaps by improving the upper bounds as shown by Table 2. Different proof
techniques are used and new forecasting strategies are proposed. The most original contribution is
the introduction of a new forecaster, INF (Implicitly Normalized Forecaster), for which we propose
a unified analysis of its regret in the four games we consider. The analysisis original (it avoids
the traditional but scope-limiting argument based on the simplification of a sum oflogarithms of
ratios), and allows to fill in the long open gap in the bandit problems with oblivious adversaries (and
with general adversaries for the pseudo-regret notion). The analysis also applies to exponentially
weighted average forecasters. It allows to prove a regret bound of order

√
nKSlog(nK/S) when the

forecaster’s strategy is compared to a strategy allowed to switchS times between arms, while the
best known bound was

√
nKSlog(nK) (Auer, 2002), and achieved for a different policy.

An “orthogonal” contribution is to propose a tuning of the parameters of the forecasting policies
such that the high probability regret bounds holds for any confidence level (instead of holding just
for a single confidence level as in previous works). Bounds on the expected regret that are deduced
from these PAC (“probably approximately correct”) regret bounds are better than previous bounds
by a logarithmic factor in the games with limited information (see columns on infsupERn in Tables
1 and 2). The arguments to obtain these bounds are not fundamentally new and rely essentially on
a careful use of deviation inequalities for supermartingales. They can beused either in the standard
analysis of exponentially weighted average forecasters or in the more general context of INF.
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infsupRn infsupERn High probability
bound onRn

Label efficient game n
√

logK
m n

√
log(Kδ−1)

m

Bandit game with fully oblivious adversary
√

nK
√

nK
√

nK log(δ−1)

Bandit game with oblivious adversary
√

nK
√

nK
√

nK
logK log(Kδ−1)

Bandit game with general adversary
√

nK
√

nKlogK
√

nK
logK log(Kδ−1)

L.E. bandit with deterministic adversary n
√

K
m n

√
K
m n

√
K
m log(δ−1)

L.E. bandit with oblivious adversary n
√

K
m n

√
K
m n

√
K

mlogK log(Kδ−1)

L.E. bandit with general adversary n
√

K
m n

√
K logK

m n
√

K
mlogK log(Kδ−1)

Table 2: New regret upper bounds proposed in this work. The high probability bounds are for a
policy of the forecaster that does not depend on the confidence levelδ (unlike previously
known high probability bounds).

Another “orthogonal” contribution is the proposal of a new biased estimate of the rewards in
bandit games, which allows to achieve high probability regret bounds depending on the performance
of the optimal arm: in this new bound, the factorn is replaced byGmax= maxi=1,...,n ∑n

t=1gi,t . If the
forecaster drawsIt according to the distributionpt = (p1,t , . . . , pK,t), then the new biased estimate

of gi,t is vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
. This estimate should be compared tovi,t = gi,t

1IIt=i

pi,t
, for which

bounds in terms ofGmax exists in expectations as shown in (Auer et al., 2002b, Section 3), and to
vi,t = gi,t

1IIt=i

pi,t
+ β

pi,t
for someβ > 0 for which high probability bounds exist but they are expressed

with then factor, and notGmax (see Section 6 of Auer et al., 2002b, and Section 6.8 of Cesa-Bianchi
and Lugosi, 2006).

We also propose a unified proof to obtain the lower bounds in Table 1. The contribution of
this proof is two-fold. First it gives the first lower bound for the label efficient bandit game. Sec-
ondly in the case of the label efficient (full information) game it is a simpler proof than the one
proposed in Cesa-Bianchi et al. (2005). Indeed in the latter proof, theauthors use Birǵe’s version
of Fano’s lemma to prove the lower bound for deterministic forecasters. Then the extension to non-
deterministic forecasters is done by a generalization of this information lemma anda decomposition
of general forecasters into a convex combination of deterministic forecasters. The benefit from this
proof technique is to be able to deal with the caseK = 2 andK = 3 while the basic version of Fano’s
lemma does not give any information in this case. Here we propose to use Pinsker’s inequality for
the caseK = 2 andK = 3. This allows us to use the basic version of Fano’s lemma and to extend
the result to non-deterministic forecasters with a simple application of Fubini’s Theorem.

The last contribution of this work is also independent of the previous ones and concerns the
stochastic bandit game (that is the bandit game with “stochastic” adversary). We prove that a mod-
ification of UCB1, Auer et al. (2002a), attains the optimal distribution-free rate

√
nK as well as the

logarithmic distribution-dependent rate. The key idea, compared to previous works, is to reduce
exploration of sufficiently drawn arms.
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1.6 Outline

In Section 2, we describe a new class of forecasters, called INF, for prediction games. Then we
present a new forecaster inside this class, called Poly INF, for which wepropose a general theorem
bounding its regret. A more general statement on the regret of any INF can be found in Appendix A.
Exponentially weighted average forecasters are a special case of INFas shown in Section 3. In Sec-
tion 4, we prove that our forecasters and analysis recover the known results for the full information
game.

Section 5 contains the core contributions of the paper, namely all the regretbounds for the lim-
ited feedback games. The interest of Poly INF appears in the bandit gameswhere it satisfies a regret
bound without a logarithmic factor, unlike exponentially weighted average forecasters. Section 6
provides high probability bounds in the bandit games that depends on the cumulative reward of the
optimal arm: the factorn is replaced by max1≤i≤K ∑n

t=1gi,t . In Section 7, we consider a stronger
notion of regret, when we compare ourselves to a strategy allowed to switch between arms a fixed
number of times. Section 8 shows how to generalize our results when one considers losses rather
than gains, or signed games.

Section 9 considers a framework fundamentally different from the previous sections, namely
the stochastic multi-armed bandit problem. There we propose a new forecaster, MOSS, for which
we prove an optimal distribution-free rate as well as a logarithmic distribution-dependent rate.

Appendix A contains a general regret upper bound for INF and two useful technical lemmas.
Appendix B contains the unified proof of the lower bounds. Appendix C contains the proofs that
have not been detailed in the main body of the paper. Finally, Appendix D gathers the different
results we have obtained regarding the relation between the expected regret and the pseudo-regret.

2. The Implicitly Normalized Forecaster

In this section, we define a new class of randomized policies for the general prediction game. Let
us consider a continuously differentiable functionψ : R∗

− → R
∗
+ satisfying

ψ′ > 0, lim
x→−∞

ψ(x)< 1/K, lim
x→0

ψ(x)≥ 1. (1)

Lemma 1 There exists a continuously differentiable function C: RK
+ → R satisfying for any x=

(x1, . . . ,xK) ∈ R
K
+,

max
1≤i≤K

xi <C(x)≤ max
1≤i≤K

xi −ψ−1(1/K) , (2)

and
K

∑
i=1

ψ(xi −C(x)) = 1. (3)

Proof Consider a fixedx= (x1, . . . ,xK). The decreasing functionφ : c 7→ ∑K
i=1 ψ(xi −c) satisfies

lim
c→ max

1≤i≤K
xi

φ(c)> 1 and lim
c→+∞

φ(c)< 1.

From the intermediate value theorem, there is a uniqueC(x) satisfyingφ(C(x)) = 1. From the im-
plicit function theorem, the mappingx 7→C(x) is continuously differentiable.
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INF (Implicitly Normalized Forecaster):

Parameters:

• the continuously differentiable functionψ : R∗
− → R

∗
+ satisfying (1)

• the estimatesvi,t of gi,t based on the (drawn arms and) observed rewards at time
t (and before timet)

Let p1 be the uniform distribution over{1, . . . ,K}.

For each roundt = 1,2, . . . ,

(1) Draw an armIt from the probability distributionpt .

(2) Use the observed reward(s) to build the estimatevt = (v1,t , . . . ,vK,t) of
(g1,t , . . . ,gK,t) and let:Vt = ∑t

s=1vs = (V1,t , . . . ,VK,t).

(3) Compute the normalization constantCt =C(Vt).

(4) Compute the new probability distributionpt+1 = (p1,t+1, . . . , pK,t+1) where

pi,t+1 = ψ(Vi,t −Ct).

Figure 2: The proposed policy for the general prediction game.

The implicitly normalized forecaster (INF) is defined in Figure 2. Equality (3) makes the fourth
step in Figure 2 legitimate. From (2),C(Vt) is roughly equal to max1≤i≤K Vi,t . Recall thatVi,t is an
estimate of the cumulative gain at timet for arm i. This means that INF chooses the probability
assigned to armi as a function of the (estimated) regret. Note that, in spirit, it is similar to the
traditional weighted average forecaster, see for example Section 2.1 of Cesa-Bianchi and Lugosi
(2006), where the probabilities are proportional to a function of the difference between the (esti-
mated) cumulative reward of armi and the cumulative reward of the policy, which should be, for a
well-performing policy, of orderC(Vt).

The interesting feature of the implicit normalization is the following argument, whichallows to
recover the results concerning the exponentially weighted average forecasters, and more interest-
ingly to propose a policy having a regret of order

√
nK in the bandit game with oblivious adversary.

First note that∑n
t=1 ∑K

i=1 pi,tvi,t roughly evaluates the cumulative reward∑n
t=1gIt ,t of the policy. In

fact, it is exactly the cumulative gain in the bandit game whenvi,t = gi,t
1IIt=i

pi,t
, and its expectation is

exactly the expected cumulative reward in the full information game whenvi,t = gi,t . The argument
starts with an Abel transformation and consequently is “orthogonal” to the usual argument given in
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the beginning of Section C.2. LettingV0 = 0∈ R
K . We have

n

∑
t=1

gIt ,t ≈
n

∑
t=1

K

∑
i=1

pi,tvi,t

=
n

∑
t=1

K

∑
i=1

pi,t(Vi,t −Vi,t−1)

=
K

∑
i=1

pi,n+1Vi,n+
K

∑
i=1

n

∑
t=1

Vi,t(pi,t − pi,t+1)

=
K

∑
i=1

pi,n+1
(
ψ−1(pi,n+1)+Cn

)
+

K

∑
i=1

n

∑
t=1

(ψ−1(pi,t+1)+Ct)(pi,t − pi,t+1)

=Cn+
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1),

where the remarkable simplification in the last step is closely linked to our specificclass of ran-
domized algorithms. The equality is interesting since, from (2),Cn approximates the maximum
estimated cumulative reward max1≤i≤K Vi,n, which should be close to the cumulative reward of the
optimal arm max1≤i≤K Gi,n, whereGi,n = ∑n

t=1gi,t . Since the last term in the right-hand side is

K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1)≈
K

∑
i=1

n

∑
t=1

∫ pi,t+1

pi,t

ψ−1(u)du=
K

∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du, (4)

we obtain

max
1≤i≤K

Gi,n−
n

∑
t=1

gIt ,t /−
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

∫ pi,n+1

1/K
ψ−1(u)du. (5)

The right-hand side is easy to study: it depends only on the final probabilityvector and has simple
upper bounds for adequate choices ofψ. For instance, forψ(x) = exp(ηx) + γ

K with η > 0 and
γ ∈ [0,1), which corresponds to exponentially weighted average forecasters aswe will explain in
Section 3, the right-hand side is smaller than1−γ

η log
(

K
1−γ
)
+γCn. Forψ(x) =

( η
−x

)q
+ γ

K with η> 0,

q> 1 andγ ∈ [0,1), which will appear to be a fruitful choice, it is smaller thanqq−1ηK1/q+γCn. For
sake of simplicity, we have been hiding the residual terms of (4) coming from the Taylor expansions
of the primitive function ofψ−1. However, these terms when added together (nK terms!) are not
that small, and in fact constrain the choice of the parametersγ andη if one wishes to get the tightest
bound.

The rigorous formulation of (5) is given in Theorem 27, which has been put in Appendix A for
lack of readability. We propose here its specialization to the functionψ(x) =

( η
−x

)q
+ γ

K with η > 0,
q> 1 andγ ∈ [0,1). This function obviously satisfies conditions (1). We will refer to the associated
forecasting strategy as “Poly INF”. Here the (normalizing) functionC has no closed form expression
(this is a consequence of Abel’s impossibility theorem). Actually this remark holds in general, hence
the name of the general policy. However this does not lead to a major computational issue since, in
the interval given by (2),C(x) is the unique solution ofφ(c) = 1, whereφ : c 7→ ∑K

i=1 ψ(xi − c) is
a decreasing function. We will prove that Poly INF forecaster generates nicer probability updates
than the exponentially weighted average forecasteras as, for bandits games (label efficient or not), it
allows to remove the extraneous logK factor in the pseudo-regret bounds and some regret bounds.
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Theorem 2 (General regret bound for Poly INF) Let ψ(x) =
( η
−x

)q
+ γ

K with q> 1, η > 0 and
γ ∈ [0,1). Let(vi,t)1≤i≤K, 1≤t≤n be a sequence of nonnegative real numbers,

Bt = max
1≤i≤K

vi,t , and B= max
t

Bt .

If γ = 0 then INF satisfies:
(

max
1≤i≤K

n

∑
t=1

vi,t

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+

q
2η

exp

(
2

q+1
η

B

) n

∑
t=1

B2
t , (6)

and (
max

1≤i≤K

n

∑
t=1

vi,t

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+

qB
η

exp

(
8qB

η

) n

∑
t=1

K

∑
i=1

pi,tvi,t . (7)

For γ > 0, if we have vi,t =
ct
pi,t

1Ii=It for some random variable ct taking values in[0,c] with 0< c<

qη
( γ
(q−1)K

)(q−1)/q
, then

(1− γ)
(

max
1≤i≤K

n

∑
t=1

vi,t

)
− (1+ γζ)

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK

1
q , (8)

where

ζ =
1

(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1− c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

In all this work, the parametersη, q andγ will be chosen such thatζ andµ act as numerical
constants. To derive concrete bounds from the above theorem, most ofthe work lies in relating the
left-hand side with the different notions of regret we consider. This taskis trivial for the pseudo-
regret. To derive high probability regret bounds, deviation inequalities for supermartingales are
used on top of (6) and (8) (which hold with probability one). Finally, the expected regret bounds are
obtained by integration of the high probability bounds.

As long as numerical constants do not matter, one can use (7) to recover the bounds obtained
from (6). The advantage of (7) over (6) is that it allows to get regret bounds where the factorn is
replaced byGmax= maxi=1,...,nGi,n.

3. Exponentially Weighted Average Forecasters

The normalization by division that weighted average forecasters perform is different from the nor-
malization by shift of the real axis that INF performs. Nonetheless, we canrecover exactly the
exponentially weighted average forecasters because of the special relation of the exponential with
the addition and the multiplication.

Let ψ(x) = exp(ηx)+ γ
K with η > 0 andγ ∈ [0,1). Then conditions (1) are clearly satisfied and

(3) is equivalent to exp(−ηC(x)) = 1−γ
∑K

i=1 exp(ηxi)
, which implies

pi,t+1 = (1− γ)
exp(ηVi,t)

∑K
j=1exp(ηVi,t)

+
γ
K
.
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In other words, for the full information case (label efficient or not), werecover the exponentially
weighted average forecaster (withγ = 0) while for the bandit game we recover EXP3. For the label
efficient bandit game, it does not give us the GREEN policy proposed in Allenberg et al. (2006)
but rather the straightforward modification of the exponentially weighted average forecaster to this
game (Gÿorgy and Ottucśak, 2006). Theorem 3 below gives a unified view on this algorithm for
these four games. In the following, we will refer to this algorithm as the “exponentially weighted
average forecaster” whatever the game is.

Theorem 3 (Regret bound for the exponentially weighted average forecaster)
Letψ(x)= exp(ηx)+ γ

K with η> 0 andγ∈ [0,1). Let(vi,t)1≤i≤K, 1≤t≤n be a sequence of nonnegative
real numbers,

Bt = max
1≤i≤K

vi,t , and B= max
1≤t≤n

Bt .

Consider the increasing functionΘ : u 7→ eu−1−u
u2 equal to1/2 by continuity at zero. Ifγ = 0 then

INF satisfies: (
max

1≤i≤K

n

∑
t=1

vi,t

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
logK

η
+

η
8

n

∑
t=1

B2
t , (9)

and (
max

1≤i≤K

n

∑
t=1

vi,t

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
logK

η
+ηBΘ(ηB)

n

∑
t=1

K

∑
i=1

pi,tvi,t . (10)

If we have
γ ≥ KηΘ(ηB)max

i,t
pi,tvi,t , (11)

then INF satisfies:

(1− γ)
(

max
1≤i≤K

n

∑
t=1

vi,t

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ (1− γ)
logK

η
. (12)

We have the same discussion about (9) and (10) than about (6) and (7): Inequality (10) allows to
prove bounds where the factorn is replaced byGmax= maxi=1,...,nGi,n, but at the price of worsened
numerical constants, when compared to (9). We illustrate this point in Theorem 4, where (13) and
(14) respectively comes from (9) and (10) .

The above theorem relies on the standard argument based on the cancellation of terms in a sum
of logarithms of ratios (see Section C.2). For sake of comparison, we haveapplied our general result
for INF forecasters, that is Theorem 27 (see Appendix A). This leadsto the same result with wors-
ened constants. Precisely,η

8 becomesη
2 exp(2ηB) in (9) while Θ(ηB) becomesexp(2Bη)[1+exp(2Bη)]

2
in (11). This seems to be the price for having a theorem applying to a large class of forecasters.

4. The Full Information (FI) Game

The purpose of this section is to illustrate the general regret bounds given in Theorems 2 and 3 in the
simplest case, when we setvi,t = gi,t , which is possible since the rewards for all arms are observed
in the full information setting. The next theorem is given explicitly to show an easy application of
Inequalities (9) and (10).
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Theorem 4 (Exponentially weighted average forecaster in the FI game) Letψ(x)= exp(ηx)with
η > 0. Let vi,t = gi,t . Then in the full information game, INF satisfies

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
logK

η
+

ηn
8
. (13)

and

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
logK

η
+ηΘ(η)

n

∑
t=1

K

∑
i=1

pi,tgi,t . (14)

In particular with η =
√

8logK
n , we getERn ≤

√n
2 logK, and there existsη > 0 such that

ERn ≤
√

2EGmaxlogK.

Proof It comes from (9) and (10) since we haveB ≤ 1 and∑n
t=1B2

t ≤ n. The only nontrivial
result is the last inequality. It obviously holds for anyη whenEGmax = 0, and is achieved for
η = log

(
1+
√

2(logK)/EGmax
)
, whenEGmax> 0. Indeed, by taking the expectation in (14), we

get

E

n

∑
t=1

K

∑
i=1

pi,tgi,t ≥
ηEGmax− logK

exp(η)−1
= log

(
1+

√
2logK
EGmax

)√
(EGmax)3

2logK
−
√

EGmaxlogK
2

≥ EGmax−2

√
EGmaxlogK

2
,

where we use log(1+x)≥ x− x2

2 for anyx≥ 0 in the last inequality.

Now we consider a new algorithm for the FI game, that is INF withψ(x) =
( η
−x

)q
andvi,t = gi,t .

Theorem 5 (Poly INF in the FI game) Let ψ(x) =
( η
−x

)q
with η > 0 and q > 1. Let vi,t = gi,t .

Then in the full information game, INF satisfies:

max
1≤i≤K

n

∑
i=1

gi,t −
n

∑
t=1

K

∑
i=1

pi,tgi,t ≤
q

q−1
ηK1/q+exp

(4q
η

)qn
2η

. (15)

In particular with q= 3logK andη = 1.8
√

nlogK we get

ERn ≤ 7
√

nlogK.

Proof It comes from (6),q+1≤ 2q and∑n
t=1B2

t ≤ n.

Remark 6 By using the Hoeffding-Azuma inequality (see, e.g., Lemma A.7 of Cesa-Bianchi and
Lugosi, 2006), one can derive high probability bounds from (13) and(15): for instance, from (15),
for anyδ > 0, with probability at least 1−δ, Poly INF satisfies:

Rn ≤
q

q−1
ηK1/q+exp

(4q
η

)qn
2η

+

√
nlog(δ−1)

2
.
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5. The Limited Feedback Games

This section provides regret bounds for three limited feedback games: thelabel efficient game, the
bandit game, and the mixed game, that is the label efficient bandit game.

5.1 Label Efficient Game (LE)

The variants of the LE game consider that the number of queried reward vectors is constrained either
strictly or just in expectation. This section considers successively these two cases.

5.1.1 CONSTRAINT ON THEEXPECTEDNUMBER OF QUERIED REWARD VECTORS

As in Section 4, the purpose of this section is to show how to use INF in order torecover known
minimax bounds (up to constant factors) in a slight modification of the LE game: the simple LE
game, in which the requirement is that theexpectednumber of queried reward vectors should be
less or equal tom.

Let us consider the following policy. At each round, we draw a Bernoullirandom variableZt ,
with parameterε = m/n, to decide whether we ask for the gains or not. Note that we do not fulfill
exactly the requirement of the LE game as we might ask a bit more thanm reward vectors, but we
fulfill the one of the simple LE game. We do so in order to avoid technical details and focus on
the main argument of the proof. The exact LE game will be addressed in Section 5.1.2, where, in
addition, we will prove bounds on the expected regretERn instead of just the pseudo-regretRn.

In this section, the estimate ofgi,t is vi,t =
gi,t

ε Zt , which is observable since the rewards at timet
for all arms are observed whenZt = 1.

Theorem 7 (Exponentially weighted average forecaster in the simpleLE game) Let ψ(x) =

exp(ηx) with η =
√

8mlogK
n . Let vi,t =

gi,t

ε Zt with ε = m
n . Then in the simple LE game, INF satis-

fies

Rn ≤ n

√
logK
2m

.

Proof The first inequality comes from (9). Since we haveBt ≤ Zt/ε andvi,t =
gi,t

ε Zt , we obtain

(
max

1≤i≤K

n

∑
t=1

gi,t
Zt

ε

)
−

n

∑
t=1

K

∑
i=1

pi,tgi,t
Zt

ε
≤ logK

η
+

η
8ε2

n

∑
t=1

Zt ,

hence, by taking the expectation of both sides,

Rn =

(
max

1≤i≤K
E

n

∑
t=1

gi,t
Zt

ε

)
−E

n

∑
t=1

K

∑
i=1

pi,tgi,t
Zt

ε
≤ logK

η
+

nη
8ε

=
logK

η
+

n2η
8m

.

Straightforward computations conclude the proof.

A similar result can be proved for the INF forecaster withψ(x) =
( η
−x

)q
, η > 0 andq of order

logK. We do not state it since we will prove a stronger result in the next section.
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5.1.2 HARD CONSTRAINT ON THENUMBER OF QUERIED REWARD VECTORS

The goal of this section is to push the idea that by using high probability bounds as an intermediate
step, one can control the expected regretERn = Emax1≤i≤K ∑n

t=1

(
gi,t − gIt ,t

)
instead of just the

pseudo-regretRn = max1≤i≤K E∑n
t=1

(
gi,t − gIt ,t

)
. Most previous works have obtained results for

Rn. These results are interesting for oblivious opponents, that is when the adversary’s choices of the
rewards do not depend on the past draws and obtained rewards, since in this case Proposition 33 in
Appendix D shows that one can extend bounds on the pseudo-regretRn to the expected regretERn.
For non-oblivious opponents, upper bounds onRn are rather weak statements and high probability
bounds onRn or bounds onERn are desirable. In Auer (2002) and Cesa-Bianchi and Lugosi (2006),
high probability bounds onRn have been given. Unfortunately, the policies proposed there are
depending on the confidence level of the bound. As a consequence, the resulting best bound onERn,
obtained by choosing the policies with confidence level parameter of order1/n, has an extraneous
logn term. Specifically, from Theorem 6.2 of Cesa-Bianchi and Lugosi (2006), one can immediately

deriveERn ≤ 8n
√

log(4K)+log(n)
m +1. The theorems of this section essentially show that the logn term

can be removed.
As in Section 5.1.1, we still use a draw of a Bernoulli random variableZt to decide whether we

ask for the gains or not. The difference is that, if∑t−1
s=1Zs≥ m, we do not ask for the gains (as we are

not allowed to do so). To avoid that this last constraint interferes in the analysis, the parameter of
the Bernoulli random variable is set toε = 3m

4n and the probability of the event∑n
t=1Zt > m is upper

bounded. The estimate ofgi,t remainsvi,t =
gi,t

ε Zt .

Theorem 8 (Exponentially weighted average forecaster in the LE game) Let ψ(x) = exp(ηx)

with η =
√

mlogK
n . Let vi,t =

gi,t

ε Zt with ε = 3m
4n . Then in the LE game, for anyδ > 0, with prob-

ability at least1−δ, INF satisfies:

Rn ≤ n

√
27log(2Kδ−1)

m
,

and

ERn ≤ n

√
27log(6K)

m
.

Theorem 9 (Poly INF in the LE game) Letψ(x)=
( η
−x

)q
with q= 3log(2K) andη= 2n

√
log(2K)

m .

Let vi,t =
gi,t

ε Zt with ε = 3m
4n . Then in the LE game, for anyδ > 0, with probability at least1−δ, INF

satisfies:

Rn ≤
(
8−

√
27
)
n

√
log(2K)

m
+n

√
27log(2Kδ−1)

m
,

and

ERn ≤ 8n

√
log(6K)

m
.

5.2 Bandit Game

This section is cut into two parts. In the first one, from Theorem 2 and Theorem 3, we derive
upper bounds on the pseudo-regretRn =max1≤i≤K E∑n

t=1

(
gi,t −gIt ,t

)
. To bound the expected regret
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ERn = Emax1≤i≤K ∑n
t=1

(
gi,t −gIt ,t

)
, we will then use high probability bounds on top of the use of

these theorems. Since this makes the proofs more intricate, we have chosen toprovide the less
general results, but easier to obtain, in Section 5.2.1 and the more generalones in Section 5.2.2.

The main results here are that, by using the INF with a polynomial functionψ, we obtain
an upper bound of order

√
nK for Rn, which imply a bound of order

√
nK on ERn for oblivious

adversaries (Proposition 33 in Appendix D). In the general case (containing the non-oblivious
opponent), we show an upper bound of order

√
nK logK on ERn. We conjecture that this bound

cannot be improved, that is the opponent may take advantage of the past tomake the player pay a
regret with the extra logarithmic factor (see Remark 14).

5.2.1 BOUNDS ON THEPSEUDO-REGRET

In this section, the estimate ofgi,t is vi,t =
gi,t

pi,t
1IIt=i , which is observable since the rewardgIt ,t is

revealed at timet.

Theorem 10 (Exponentially weighted average forecaster in the bandit game) Let ψ(x) =
exp(ηx)+ γ

K with 1> γ ≥ 4ηK
5 > 0. Let vi,t =

gi,t

pi,t
1IIt=i . Then in the bandit game, INF satisfies:

Rn ≤
logK

η
+ γ max

1≤i≤K
EGi,n.

In particular, for γ = min
(

1
2,
√

4K logK
5n

)
andη =

√
5logK
4nK , we have

Rn ≤
√

16
5

nK logK.

Proof One simply needs to note that for 5γ ≥ 4Kη, (11) is satisfied (sinceB= K/γ), and thus (12)
can be rewritten into

(1− γ)
(

max
1≤i≤K

n

∑
t=1

gi,t

pi,t
1IIt=i

)
−

n

∑
t=1

gIt ,t ≤ (1− γ)
logK

η
.

By taking the expectation, we get

Rn ≤ (1− γ)
logK

η
+ γ max

1≤i≤K
EGi,n.

For the numerical application, sinceRn ≤ n, the bound is trivial
√

(4K logK)/(5n)< 1
2. Otherwise,

it is a direct application of the general bound.

Theorem 11 (Poly INF in the bandit game) Considerψ(x) =
( η
−x

)q
+ γ

K with γ=min
(

1
2,
√

3K
n

)
,

η =
√

5n and q= 2. Let vi,t =
gi,t

pi,t
1IIt=i . Then in the bandit game, INF satisfies:

Rn ≤ 8
√

nK.
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Proof The bound is trivial when1
2 ≤

√
3K
n . So we consider hereafter thatγ =

√
3K
n < 1

2. By

taking the expectation in (8) and lettinḡGmax = max1≤i≤K EGi,n, we obtain that forγ > (q−
1)K(qη)q/(1−q) > 0 (condition coming from the condition onc for (8)),

(1− γ)Ḡmax− (1+ γζ)E
n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q ,

with

ζ =
1

(q−1)K

((q−1)Kµ(1+µ)
2γη

)q
,

and

µ= exp

{
2(q+1)

η

(
K
γ

)(q−1)/q
(

1− 1
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤ γ(1+ζ)Ḡmax+
q

q−1
ηK

1
q ≤ γ(1+ζ)n+

q
q−1

ηK
1
q .

The desired inequality is trivial when
√

K/n ≥ 1/8. So we now consider that
√

K/n < 1/8. For
γ =

√
3K/n, η =

√
5n andq= 2, the condition onγ is satisfied (since

√
K/n< 1/8), and we have

1
η(

K
γ )

(q−1)/q ≤ 0.121, henceµ≤ 2.3, ζ ≤ 1 andRn ≤ 8
√

nK.

We have arbitrarily chosenq= 2 to provide an explicit upper bound. More generally, it is easy
to check from the proof of Theorem 11 that for any real numberq> 1, we obtain the convergence
rate

√
nK, provided thatγ andη are respectively taken of order

√
K/n and

√
nK/K1/q.

5.2.2 HIGH PROBABILITY BOUNDS AND BOUNDS ON THEEXPECTEDREGRET

Theorems 10 and 11 provide upper bounds onRn = max1≤i≤K E∑n
t=1

(
gi,t −gIt ,t

)
. To boundERn =

Emax1≤i≤K ∑n
t=1

(
gi,t − gIt ,t

)
, we will use high probability bounds. First we need to modify the

estimates ofgi,t by consideringvi,t =
gi,t

pi,t
1IIt=i +

β
pi,t

with 0< β≤ 1, as was proposed in Auer (2002),2

or vi,t =−1IIt=i

β log
(
1− βgi,t

pi,t

)
as we propose here.

Theorem 12 (Exponentially weighted average forecaster in the bandit game)

Consider ψ(x) = exp(ηx) + γ
K with γ = min

(
2
3,2
√

K log(3K)
n

)
and η = 2

√
log(3K)

Kn . Let vi,t =

−1IIt=i

β log
(
1− βgi,t

pi,t

)
with β =

√
log(3K)

2Kn . Then in the bandit game, against any adversary (possibly a

non-oblivious one), for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤ 3
√

nK log(3K)+

√
2nK

log(3K)
log(Kδ−1),

and alsoERn ≤ (3+
√

2)
√

nK log(3K).

2. The technical reason for this modification, which may appear surprising as it introduces a bias in the estimate ofgi,t ,
is that it allows to have high probability upper bounds with the correct rate onthe difference∑n

t=1gi,t −∑n
t=1vi,t . A

second reason for this modification (but useless for this particular section) is that it allows to track the best expert
(see Section 7).
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This theorem is similar to Theorem 6.10 of Cesa-Bianchi and Lugosi (2006). The main dif-
ference here is that the high probability bound holds for any confidencelevel, and not only for a
confidence level depending on the algorithm. As a consequence, our algorithm, unlike the one pro-
posed in previous works, satisfies both a high probability bound and an expected regret bound of
order

√
nK log(K).

Theorem 13 (Poly INF in the bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with η = 2
√

n, q= 2 andγ =

min
(

1
2,3
√

K
n

)
. Consider vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2Kn
. Then in the bandit game,

against a deterministic adversary, for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤ 9
√

nK+
√

2nK log(δ−1). (16)

Against an oblivious adversary, it satisfies

ERn ≤ 10
√

nK. (17)

Moreover in the general case (containing the non-oblivious opponent),with the following parame-

ters q= 2, γ = min
(

1
2,3
√

K log(3K)
n

)
, η = 2

√
n

log(3K) andβ =
√

log(3K)
2nK , it satisfies with probability

at least1−δ,

Rn ≤ 9
√

nK log(3K)+

√
2nK

log(3K)
log(δ−1),

and
ERn ≤ 9

√
nK log(3K).

Remark 14 We conjecture that the order
√

nK logK of the bound onERn cannot be improved in
the general case containing the non-oblivious opponent. Here is the main argument to support our
conjecture. Consider an adversary choosing all rewards to be equalto one until time n/2 (say n
is even to simplify). Then, letk̂ denote the arm for which the estimate Vi,n/2 = ∑1≤t≤n/2vi,t of the
cumulative reward of arm i is the smallest. After time n/2, all rewards are chosen to be equal to zero
except for arm̂k for which the rewards are still chosen to be equal to1. Since we believe that with
high probability,max1≤i≤K Vi,n/2−min j∈{1,...,K}Vj,n/2 ≥ κ

√
nK logK for some small enoughκ > 0,

it seems that the INF algorithm achieving a bound of order
√

nK onERn in the oblivious setting
will suffer an expected regret of order at least

√
nK logK. While this does not prove the conjecture

as one can design other algorithms, it makes the conjecture likely to hold.

5.3 Label Efficient Bandit Game (LE Bandit)

The following theorems concern the simple LE bandit game, in which the requirement is that the
expectednumber of queried rewards should be less or equal tom. We consider the following policy.
At each round, we draw a Bernoulli random variableZt , with parameterε = m/n, to decide whether
the gain of the chosen arm is revealed or not. Note that this policy does not fulfil exactly the
requirement of the LE bandit game as we might ask a bit more thanm rewards, but, as was argued
in Section 5.1.2, it can be modified in order to fulfil the hard constraint of the game. The theoretical
guarantees are then the same (up to numerical constant factors).
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Theorem 15 (Exponentially weighted average forecaster in the simple LE bandit game) Let

ψ(x) = exp(ηx) + γ
K with γ = min

(
1
2,
√

4K logK
5m

)
and η = 1

n

√
5mlogK

4K . Let vi,t = gi,t
1IIt=i

pi,t

Zt
ε with

ε = m
n . Then in the simple LE bandit game, INF satisfies:

Rn ≤ n

√
16K logK

5m
.

Proof One simply needs to note that for 5γ ≥ 4Kη
ε , (11) is satisfied, and thus by taking the expecta-

tion in (12), we get

Rn ≤ (1− γ)
logK

η
+ γE max

1≤i≤K
Vi,n ≤ (1− γ)

logK
η

+ γn.

We thus have

Rn ≤
n
m

(
(1− γ)

logK
η/ε

+ γm

)
.

The numerical application for the term in parenthesis is then exactly the same asthe one proposed
in the proof of Theorem 10 (withn andη respectively replaced bym andη/ε).

Theorem 16 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with γ =

min
(

1
2,
√

3K
m

)
, η = n

√
5
m and q= 2. Let vi,t = gi,t

1IIt=i

pi,t

Zt
ε with ε = m

n . Then in the simple LE

bandit game, INF satisfies:

Rn ≤ 8n

√
K
m
.

Proof By taking the expectation in (8) and lettinḡGmax = max1≤i≤K EGi,n, we obtain that for
γ > (q−1)K(qηε)q/(1−q) > 0 (condition coming from the condition onc for (8)),

(1− γ)Ḡmax− (1+ γζ)E
n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q ,

with

ζ =
1

(q−1)K

((q−1)Kµ(1+µ)
2γηε

)q
,

and

µ= exp

{
2(q+1)

ηε

(
K
γ

)(q−1)/q
(

1− 1
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

We thus have

Rn ≤
n
m

(
γ(1+ζ)m+

q
q−1

(ηε)K
1
q

)
.

The numerical application for the term in parenthesis is exactly the same than theone proposed in
the proof of Theorem 11 (withn andη respectively replaced bym andηε).

Both previous theorems only consider the pseudo-regret. By estimatinggi,t differently, we ob-
tain the following result for the regret.
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Theorem 17 (Poly INF in the simple LE bandit game) Let ψ(x) =
( η
−x

)q
+ γ

K with η = 2n/
√

m,

q= 2 andγ = min
(

1
2,3
√

K
m

)
. Consider vi,t = −1IIt=iZt

β log
(
1− βgi,t

εpi,t

)
with β = 1

n

√ m
2K . Then in the

simple LE bandit game, against a deterministic adversary, for anyδ > 0, with probability at least
1−δ, INF satisfies:

Rn ≤ 10.7n

√
K
m
+3.1n

√
K
m

log(δ−1).

Against an oblivious adversary, it satisfies

ERn ≤ 13
√

nK.

Moreover in the general case (containing the non-oblivious opponent),with the following param-

eters q= 2, γ = min
(

1
2,3
√

K log(3K)
m

)
, η = 2n/

√
mlog(3K) andβ = 1

n

√
mlog(3K)

2K , it satisfies with

probability at least1−δ,

Rn ≤ 10n

√
K log(3K)

m
+3.5n

√
K

mlog(3K)
log(δ−1),

and

ERn ≤ 13n

√
log(3K)

m
.

A similar result can be obtained for Exp INF, at the price of an additional logarithmic term inK
against oblivious (deterministic or not) adversaries. We omit the details.

6. Regret Bounds Scaling with the Optimal Arm Rewards

In this section, we provide regret bounds for bandit games depending on the performance of the
optimal arm: in these bounds, the factorn is essentially replaced by

Gmax= max
i=1,...,n

Gi,n,

whereGi,n = ∑n
t=1gi,t . Such a bound has been proved on the expected regret for deterministic

adversaries in the seminal work of Auer et al. (2002b). Here, by usinga new biased estimate ofgi,t ,
that is

vi,t =−1IIt=i

β log
(
1− βgi,t

pi,t

)
, we obtain a bound holding with high probability and we also consider

its extension to any adversary.
The bounds presented here are especially interesting whenGmax ≪ n: this typically occurs in

online advertizing where the different arms are the ads that can be put onthe website and where
the probability that a user clicks on an ad banner (and thus induces a reward to the webpage owner)
is very low. For deterministic adversaries, as in the bandit game, the logK factor appearing in the
exponentially weighted average forecaster regret bound disappearsin the Poly INF regret bound as
follows.
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Theorem 18 Let G0 be a real number such that G0 ≥ 81K. Letψ(x) =
( η
−x

)q
+ γ

K with η = 2
√

G0,

q = 2 and γ = 3
√

K
G0

. Let vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2KG0
. Then in the bandit game,

against a deterministic adversary, for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤ 4.5

√
K

G2
max

G0
+4
√

KG0+
√

2KG0 log(δ−1). (18)

For fully oblivious adversaries, for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤ 4.5

√
K

G2
max

G0
+4
√

KG0+
√

2KG0 log(2δ−1)+
√

8log(2Kδ−1)Gmax. (19)

For the choiceG0= n, the high probability upper bounds are of the order of
√

nK+
√

nK log(δ−1).
The interest of the theorem is to provide a policy which, for smallGmax, leads to smaller regret
bounds, as long asG0 is taken much smaller thann and but not much smaller thanGmax. For deter-
ministic adversaries,Gmax is nonrandom, and provided that we know its order, one has interest of
takingG0 of this order. Precisely, we have the following corollary for deterministic adversaries.

Corollary 19 Letψ(x) =
( η
−x

)q
+ γ

K with η = 2
√

Gmax, q= 2 andγ = min
(

1
2,3
√

K
Gmax

)
. Consider

vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β = 1√

2KGmax
. Then in the bandit game, against a deterministic

adversary, for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤ 9
√

KGmax+
√

2KGmaxlog(δ−1), (20)

and
ERn ≤ 10

√
KGmax. (21)

For more general adversaries than fully oblivious ones, we have the following result in which
the logK factor reappears.

Theorem 20 Let G0 ≥ 81K log(3K). Let ψ(x) =
( η
−x

)q
+ γ

K with q= 2, γ = 3
√

K log(3K)
G0

andη =

2
√

G0
log(3K) . Let vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0

. Then in the bandit game, against

any adversary (possibly a non-oblivious one), for anyδ > 0, with probability at least1− δ, INF
satisfies:

Rn ≤
9
2

√
G2

max

G0
K log(3K)+4

√
KG0

log(3K)
+

√
2KG0

log(3K)
log(Kδ−1).

This last result concerning Poly INF is similar to the following one concerningthe exponentially
weighted average forecaster: the advantage of Poly INF only appearswhen it allows to remove the
logK factor.

Theorem 21 Let G0> 4K log(3K). Letψ(x)= exp(ηx)+ γ
K with γ= 2

√
K log(3K)

G0
andη= 2

√
log(3K)

KG0
.

Let vi,t = −1IIt=i

β log
(
1− βgi,t

pi,t

)
with β =

√
log(3K)
2KG0

. Then in the bandit game, against any adversary

(possibly a non-oblivious one), for anyδ > 0, with probability at least1−δ, INF satisfies:

Rn ≤
5
2

√
G2

max

G0
K log(3K)+

1
2

√
KG0 log(3K)+

√
2KG0

log(3K)
log(Kδ−1).
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7. Tracking the Best Expert in the Bandit Game

In the previous sections, the cumulative gain of the forecaster was compared to the cumulative gain
of the best single expert. Here, it will be compared to more flexible strategiesthat are allowed to
switch actions. We will use

vi,t = gi,t
1IIt=i

pi,t
+

β
pi,t

,

with 0< β ≤ 1. Theβ term introduces a bias in the estimate ofgi,t , that constrains the differences
max1≤i≤K Vi,t −min1≤ j≤K Vj,t to be relatively small. This is the key property in order to track the
best switching strategy, provided that the number of switches is not too large. A switching strategy
is defined by a vector(i1, . . . , in) ∈ {1, . . . ,K}n. Its size is defined by

S(i1, . . . , in) =
n−1

∑
t=1

1Iit+1 6=it ,

and its cumulative gain is

G(i1,...,in) =
n

∑
t=1

git ,t .

The regret of a forecaster with respect to the best switching strategy withSswitches is then given
by:

RS
n = max

(i1,...,in):S(i1,...,in)≤S
G(i1,...,in)−

n

∑
t=1

gIt ,t .

Theorem 22 (INF for tracking the best expert in the bandit game)
Let s= Slog

(
3nK

S

)
+ 2logK with the natural convention Slog(3nK/S) = 0 for S= 0. Let vi,t =

gi,t
1IIt=i

pi,t
+ β

pi,t
with β = 3

√ s
nK . Let ψ(x) = exp(ηx)+ γ

K with γ = min
(

1
2,
√

Ks
2n

)
and η = 1

5

√ s
nK .

Then in the bandit game, for any0≤ S≤ n−1, for anyδ > 0, with probability at least1− δ, INF
satisfies:

RS
n ≤ 7

√
nKs+

√
nK
s

log(δ−1),

and

ERS
n ≤ 7

√
nKs.

Note that forS= 0, we haveRS
n = Rn, and we recover an expected regret bound of order√

nK logK similar to the one of Theorem 12.

Remark 23 Up to constant factors, the same bounds as the ones of Theorem 22 can be obtained
(via a tedious proof not requiring new arguments than the ones presentedin this work) for the INF

forecaster usingψ(x) = c1
K

(√
snK
−x

)c3s
+ c2

√ s
nK , with s= Slog

(
enK

S

)
+ log(2K) and appropriate

constantsc1, c2 andc3.
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8. Gains vs Losses, Unsigned Games vs Signed Games

To simplify, we have considered so far that the rewards were in[0,1]. Here is a trivial argument
which shows how to transfer our analysis to loss games (i.e., games with only non-positive rewards),
and more generally to signed games (i.e., games in which the rewards can be positive and negative).
If the rewards, denoted nowg′i,t , are in some interval[a,b] potentially containing zero, we setgi,t =
g′i,t−a
b−a ∈ [0,1]. Then we can apply our analysis to:

max
i∈{1,...,K}

n

∑
t=1

gi,t −
n

∑
t=1

gIt ,t =
1

b−a

(
max

i∈{1,...,K}

n

∑
t=1

g′i,t −
n

∑
t=1

g′It ,t

)
.

A less straightforward analysis can be done by looking at the INF algorithmdirectly applied to
the observed rewards (and not to the renormalized rewards). In this case, as it was already noted in
Remark 6.5 of Cesa-Bianchi and Lugosi (2006), the behavior of the algorithm may be very different
for loss and gain games. However it can be proved that our analysis still holds up to constant
factors (one has to go over the proofs and make appropriate modificationssince for simplicity, we
have presented the general results concerning INF under the assumptions that the estimatesvi,t are
nonnegative). In Section 6, we provide regret bounds scaling with the cumulative reward of the
optimal arm. For this kind of results, renormalizing will not lead to regret bounds scaling with the
cumulative reward before renormalization of the optimal arm, and consequently, the study of INF
directly applied to the observed rewards is necessary. In particular, obtaining low regret bounds
when the optimal arm has small cumulative loss would require appropriate modifications in the
proof.

9. Stochastic Bandit Game

By considering the deterministic case when the rewards aregi,t = 1 if i = 1 andgi,t = 0 otherwise,
it can be proved that the INF policies considered in Theorem 10 and Theorem 11 have a pseudo-
regret lower bounded by

√
nK. In this simple setting, and more generally in most of the stochastic

multi-armed bandit problems, one would like to suffer a much smaller regret.
We recall that in the stochastic bandit considered in this section, the rewards gi,1, . . . ,gi,n are

independent and drawn from a fixed distributionνi on [0,1] for each armi, and the reward vectors
g1, . . . ,gn are independent.3 The suboptimality of an armi is then measured by∆i = max1≤ j≤K µj −
µi whereµi is the mean ofνi . We provide now a strategy achieving a

√
nK regret in the worst case,

and a much smaller regret as soon as the∆i of the suboptimal arms are much larger than
√

K/n.
Let µ̂i,s be the empirical mean of armi afters draws of this arm. LetTi(t) denote the number

of times we have drawn armi on the firstt rounds. In this section, we propose a policy, called
MOSS (Minimax Optimal Strategy in the Stochastic case), inspired by the UCB1 policy (Auer
et al., 2002a). As in UCB1, each arm has an index measuring its performance, and at each round,
we choose the arm having the highest index. The only difference with UCB1 is to use log

(
n

Ks

)

instead of log(t) at timet (see Figure 3). As a consequence, an arm that has been drawn more than
n/K times has an index equal to the empirical mean of the rewards obtained from thearm, and when

3. Note that we do not assume independence ofg1,t , . . . ,gK,t for eacht. This assumption is usually made in the literature,
but is often useless. In our work, assuming it would just have improvedProposition 36 by a constant factor, and would
not have improved the constant in Theorem 24.
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it has been drawn close ton/K times, the logarithmic term is much smaller than the one of UCB1,
implying less exploration of this already intensively drawn arm.

MOSS (Minimax Optimal Strategy in the Stochastic case):

For an armi, define its indexBi,s by

Bi,s = µ̂i,s+

√
max

(
log( n

Ks) ,0
)

s
.

for s≥ 1 andBi,0 =+∞.

At time t, draw an arm maximizingBi,Ti(t−1).

Figure 3: The proposed policy for the stochastic bandit game.

Theorem 24 Introduce∆ = min
i∈{1,...,K}:∆i>0

∆i . MOSS satisfies

Rn ≤
23K

∆
log

(
max

(
110n∆2

K
,104

))
, (22)

and
ERn ≤ 25

√
nK. (23)

Besides, if there exists a unique arm with∆i = 0, we also have

ERn ≤
23K

∆
log

(
max

(
140n∆2

K
,104

))
. (24)

The distribution-dependent bounds Inequalities (22) and (24) show thedesired logarithmic de-
pendence inn, while the distribution-free regret bound (23) has the minimax rate

√
nK.

Remark 25 The uniqueness of the optimal arm is really needed to have the logarithmic (inn) bound
on the expected regret. This can be easily seen by considering a two-armed bandit in which both
reward distributions are identical (and non degenerated). In this case,the pseudo-regret is equal to
zero while the expected regret is of order

√
n. This reveals a fundamental difference between the

expected regret and the pseudo-regret.

Remark 26 A careful tuning of the constants in front and inside the logarithmic term ofBi,s and of
the thresholds used in the proof leads to smaller numerical constants in the previous theorem, and in
particular to supERn ≤ 6

√
nK. However, it makes the proof more intricate. So we will only prove

(23).
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Appendix A. The General Regret Upper Bound of INF

Theorem 27 (INF regret upper bound) For any nonnegative real numbers vi,t ,where i∈{1, . . . ,K}
and t∈N

∗, we still use vt = (v1,t , . . . ,vK,t) and Vt =∑t
s=1vt , with the convention V0 = 0∈R

K
+. Define

[Vt−1,Vt ] = {λVt−1+(1−λ)Vt : λ ∈ [0,1]}. Let

Bt = max
1≤i≤K

vi,t ,

ρ = max
1≤t≤n

max
v,w∈[Vt−1,Vt ], 1≤i≤K

ψ′(vi −C(v))
ψ′(wi −C(w))

,

and

At = min

(
B2

t

K

∑
i=1

ψ′ ◦ψ−1(pi,t),(1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v
2
i,t

)
.

Then the INF forecaster based onψ satisfies:

max
1≤i≤K

Vi,n ≤ Cn ≤
n

∑
t=1

K

∑
i=1

pi,tvi,t −
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1

ψ−1(u)du

)
+

ρ2

2

n

∑
t=1

At . (25)

Proof Let us setC0 =C(V0). The proof is divided into four steps.
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First step: Rewriting∑n
t=1 ∑K

i=1 pi,tvi,t .

We start with a simple Abel transformation:

n

∑
t=1

K

∑
i=1

pi,tvi,t =
n

∑
t=1

K

∑
i=1

pi,t(Vi,t −Vi,t−1)

=
K

∑
i=1

pi,n+1Vi,n+
K

∑
i=1

n

∑
t=1

Vi,t(pi,t − pi,t+1)

=
K

∑
i=1

pi,n+1
(
ψ−1(pi,n+1)+Cn

)
+

K

∑
i=1

n

∑
t=1

(ψ−1(pi,t+1)+Ct)(pi,t − pi,t+1)

=Cn+
K

∑
i=1

pi,n+1ψ−1(pi,n+1)+
K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1)

where the last step comes from the fact that∑K
i=1 pi,t = 1.

Second step: A Taylor-Lagrange expansion.

For x ∈ [0,1] we define f (x) =
∫ x

0 ψ−1(u)du. Remark that f ′(x) = ψ−1(x) and f ′′(x) =
1/ψ′(ψ−1(x)). Then by the Taylor-Lagrange formula, we know that for anyi, there exists ˜pi,t+1 ∈
[pi,t , pi,t+1] (with the convention[a,b] = [b,a] whena> b) such that

f (pi,t) = f (pi,t+1)+(pi,t − pi,t+1) f ′(pi,t+1)+
(pi,t − pi,t+1)

2

2
f ′′(p̃i,t+1),

or, in other words:

(pi,t − pi,t+1)ψ−1(pi,t+1) =
∫ pi,t

pi,t+1

ψ−1(u)du− (pi,t − pi,t+1)
2

2ψ′(ψ−1(p̃i,t+1))
.

Now by summing overt the first term on the right-hand side becomes
∫ 1/K

pi,n+1
ψ−1(u)du. More-

over, sincex → ψ(x − C(x)) is continuous, there existsW(i,t) ∈ [Vt ,Vt+1] ⊂ R
K such that

ψ
(
W(i,t)

i −C(W(i,t))
)
= p̃i,t+1. Thus we have

K

∑
i=1

n

∑
t=1

ψ−1(pi,t+1)(pi,t − pi,t+1) =
K

∑
i=1

∫ 1/K

pi,n+1

ψ−1(u)du−
K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W(i,t)

i −C(W(i,t))
) .

From the equality obtained in the first step, it gives

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t =−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1

ψ−1(u)du

)

+
K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W(i,t)

i −C(W(i,t))
) .
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Third step: The mean value theorem to compute(pi,t+1− pi,t)
2.

It is now convenient to consider the functionsfi andhi defined for anyx∈ R
K
+ by

fi(x) = ψ(xi −C(x)) and hi(x) = ψ′(xi −C(x)).

We are going to boundpi,t+1− pi,t = fi(Vt)− fi(Vt−1) by using the mean value theorem. To do so
we need to compute the gradient offi . First, we have

∂ fi
∂x j

(x) =

(
1Ii= j −

∂C
∂x j

(x)

)
hi(x).

Now, by definition ofC, we have∑K
k=1 fk(x) = 1 and thus∑K

k=1
∂ fk
∂x j

(x) = 0, which implies

∂C
∂x j

(x) =
h j(x)

∑K
k=1hk(x)

and
∂ fi
∂x j

(x) =

(
1Ii= j −

h j(x)

∑K
k=1hk(x)

)
hi(x).

Now the mean value theorem says that there existsV(i,t) ∈ [Vt−1,Vt ] such that

fi(Vt)− fi(Vt−1) =
K

∑
j=1

v j,t
∂ fi
∂x j

(V(i,t)).

Thus we have

(pi,t − pi,t+1)
2 =

(
K

∑
j=1

v j,t

(
1Ii= j −

h j(V(i,t))

∑K
k=1hk(V(i,t))

)
hi(V

(i,t))

)2

= hi(V
(i,t))2

(
vi,t −

∑K
j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

.

Fourth step: An almost variance term.

We introduceρ = maxv,w∈[Vt−1,Vt ], 1≤t≤n, 1≤i≤K
hi(v)
hi(w)

. Thus we have

K

∑
i=1

n

∑
t=1

(pi,t − pi,t+1)
2

2ψ′
(
W(i,t)

i −C(W(i,t))
) =

K

∑
i=1

n

∑
t=1

hi(V(i,t))2

2hi(W(i,t))

(
vi,t −

∑K
j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

≤ ρ2

2

n

∑
t=1

K

∑
i=1

hi(Vt−1)

(
vi,t −

∑K
j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

.

Now we need to control the term

(
vi,t − ∑K

j=1 v j,th j (V(i,t))

∑K
k=1 hk(V(i,t))

)2

. Remark that since the functionψ is

increasing we know thathi(x)≥ 0,∀x. Now since we have 0≤ vi,t ≤ Bt , we can simply bound this
last term byB2

t . A different bound can be obtained by using(a−b)2 ≤ a2+b2 whena andb have
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the same sign:
(

vi,t −
∑K

j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

≤ v2
i,t +

(
∑K

j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

≤ v2
i,t +

∑K
j=1v2

j,th j(V(i,t))

∑K
k=1hk(V(i,t))

≤ v2
i,t +ρ2 ∑K

j=1v2
j,th j(Vt−1)

∑K
k=1hk(Vt−1)

,

where the first inequality comes from the fact that both terms are nonnegative and the second in-
equality comes from Jensen’s inequality. As a consequence, we have

K

∑
i=1

hi(Vt−1)

(
vi,t −

∑K
j=1v j,th j(V(i,t))

∑K
k=1hk(V(i,t))

)2

≤
K

∑
i=1

hi(Vt−1)v
2
i,t +ρ2

K

∑
j=1

h j(Vt−1)v
2
j,t

≤ (1+ρ2)
K

∑
i=1

hi(Vt−1)v
2
i,t .

We have so far proved

Cn −
n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ −
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1

ψ−1(u)du

)
+

ρ2

2

n

∑
t=1

At .

The announced result is then obtained by using Inequality (2).

To apply successfully Theorem 27 (page 2807), we need to have tight upper bounds onρ. The
two following lemmas provide such bounds.

Lemma 28 (A simple bound on the quantityρ of Theorem 27) Letψ be a convex function satis-
fying (1) and assume that there exists B> 0 such that∀i, j, t |vi,t −v j,t | ≤ B. Then:

ρ = max
1≤t≤n

max
v,w∈[Vt−1,Vt ], 1≤i≤K

ψ′(vi −C(v))
ψ′(wi −C(w))

≤ sup
x∈(−∞,ψ−1(1)]

exp

(
B

ψ′′

ψ′ (x)

)
.

Proof Let hi(x) = ψ′(xi −C(x)),mi(x) = ψ′′(xi −C(x)). Forα ∈ [0,1] we note

ϕ(α) = log{hi(Vt−1+α(Vt −Vt−1))} .

Remark that we should rather note this functionϕi,t(α) but for sake of simplicity we omit this
dependency. With these notations we haveρ = maxα,β∈[0,1]; 1≤t≤n, 1≤i≤K exp(ϕ(α)−ϕ(β)). By the
mean value theorem for anyα,β ∈ [0,1] there existsξ ∈ [0,1] such thatϕ(α)−ϕ(β) = (α−β)ϕ′(ξ).
Now with the calculus done in the third step of the proof of Theorem 27 and using the notations
hi := hi(Vt−1+ξ(Vt −Vt−1)), mi := mi(Vt−1+ξ(Vt −Vt−1)) we obtain

ϕ′(ξ) =
K

∑
j=1

(Vj,t −Vj,t−1)

(
1Ii= j −

h j

∑K
k=1hk

)
mi

hi
=

K

∑
j=1

(vi,t −v j,t)h j

∑K
k=1hk

mi

hi
.
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Thus we get

|ϕ′(ξ)| ≤ max
1≤i, j≤K

|vi,t −v j,t | sup
v∈[Vt−1,Vt ]

ψ′′

ψ′ (vi −C(v)) .

Moreover, using thatx→ ψ(x−C(x)) is continuous we know that there exists ˜pi,t+1 ∈ [pi,t , pi,t+1]
such that ˜pi,t+1 = ψ(vi −C(v)) and thusvi −C(v) = ψ−1(p̃i,t+1). This concludes the proof.

Lemma 29 (An other bound on the quantityρ of Theorem 27) Letψ be a function satisfying(1)
and assume that there exists c> 0 such that0 ≤ vi,t ≤ c

pi,t
1Ii=It . We also assume thatψ′/ψ is a

nondecreasing function and that there exists a> 1 such thatψ
(

x+ c
ψ(x)

)
≤ aψ(x). Then:

ρ ≤ sup
x∈(−∞,ψ−1(1)]

exp

(
ac

ψ′′

ψ×ψ′ (x)

)
.

Proof We extract from the previous proof thatρ ≤ maxξ∈[0,1]; 1≤t≤n, 1≤i≤K exp(|ϕ′(ξ)|) where

ϕ′(ξ) =
K

∑
j=1

(vi,t −v j,t)h j

∑K
k=1hk

mi

hi
.

Note that, since the functionsψ andψ′/ψ are nondecreasing, the functionψ is convex, henceψ′′ ≥ 0
andmi ≥ 0 . Now using our assumption onvi,t and sincepi,t = fi(Vt−1), if i 6= It we have:

|ϕ′(ξ)| ≤
c hIt

fIt (Vt−1)

∑K
k=1hk

mi

hi
≤ c

fIt (Vt−1+ξ(Vt −Vt−1))

fIt (Vt−1)
× hIt

fIt (Vt−1+ξ(Vt −Vt−1))
× mi

hi
× 1

hIt +hi
.

Noticing that for anyx,y in R
∗
−,

ψ′
ψ (x)×ψ′′

ψ′ (y)

ψ′(x)+ψ′(y) ≤ ψ′′(y)
ψ′(y)ψ(y) , we obtain

|ϕ′(ξ)| ≤ c
fIt (Vt−1+ξ(Vt −Vt−1))

fIt (Vt−1)

mi

hi × fi(Vt−1+ξ(Vt −Vt−1))
.

On the other hand ifi = It then
|ϕ′(ξ)| ≤ c

fi(Vt−1)

mi

hi
.

To finish we only have to prove thatfIt (Vt−1+ξ(Vt −Vt−1))≤ a fIt (Vt−1). Sinceψ is increasing
it is enough to prove thatfIt (Vt)≤ a fIt (Vt−1) which is equivalent to

ψ(VIt ,t−1+vIt ,t −Ct)≤ aψ(VIt ,t−1−Ct−1).

Since 0≤ vi,t ≤ c
pi,t

1Ii=It andC is an increasing function in each of its argument it is enough to prove

ψ
(

VIt ,t−1−Ct−1+
c

ψ(VIt ,t−1−Ct−1)

)
≤ aψ(VIt ,t−1−Ct−1)

which is true by hypothesis onψ.
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Appendix B. Lower Bounds

In this section we propose a simple unified proof to derive lower bounds onthe pseudo-regret in the
four problems that we consider.

Theorem 30 Let m≥ K. Letsuprepresents the supremum taken over all oblivious adversaries and
inf the infimum taken over all forecasters, then the following holds true in the labelefficient game:4

infsupRn ≥ 0.03n

√
log(K)

m
.

and in the label efficient bandit game we have:

infsupRn ≥ 0.04n

√
K
m
.

Proof First step: Definitions.

We consider a set ofK oblivious adversaries. Theith adversary selects its gain vectors as follows:
For anyt ∈ {1, . . . ,n},gi,t ∼Ber

(
1+ε

2

)
and for j 6= i, g j,t ∼Ber

(
1−ε

2

)
. We noteEi when we integrate

with respect to the reward generation process of theith adversary. We focus on the label efficient
versions of the full information and bandits games since by takingm= n we recover the traditional
games.

Until the fifth step we consider a deterministic forecaster, that is he does nothave access to an
external randomization. Letqn = (q1,n, . . . ,qK,n) be the empirical distribution of plays over the arms
defined by:

qi,n =
∑n

t=11IIt=i

n
.

Let Jn be drawn according toqn. We notePi the law ofJn when the forecaster plays against the
ith adversary. Remark that we havePi(Jn = j) = Ei

1
n ∑n

t=11IIt= j , hence, against theith adversary we
have:

Rn = Ei

n

∑
t=1

(gi,t −gIt ,t) = εn∑
j 6=i

Pi(Jn = j) = εn(1−Pi(Jn = i)),

which implies (since a maximum is larger than a mean)

supRn ≥ εn

(
1− 1

K

K

∑
i=1

Pi(Jn = i)

)
. (26)

Second step: Information inequality.

Let P0 (respectivelyPK+1) be the law ofJn against the adversary drawing all its losses from
the Bernoulli of parameter1−ε

2 (respectively1−ε
2 + ε

K ), we call it the 0th adversary (respectively the
(K+1)th adversary). Now we use either Pinsker’s inequality which gives:

Pi(Jn = i)≤ P0(Jn = i)+

√
1
2

KL(P0,Pi),

4. Slightly better numerical constants can be obtained with a more careful optimization in step four of the proof.
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and thus (thanks to the concavity of the square root)

1
K

K

∑
i=1

Pi(Jn = i)≤ 1
K
+

√
1

2K

K

∑
i=1

KL(P0,Pi); (27)

or Fano’s lemma:
1
K

K

∑
i=1

Pi(Jn = i)≤ log2+ 1
K ∑K

i=1KL(Pi ,PK+1)

log(K−1)
. (28)

We will use (28) for the full information games whenK > 3 and (27) the bandits games and the full
information games withK ∈ {2,3}.

Third step: Computation ofKL(P0,Pi) andKL(Pi ,PK+1) with the chain rule for Kullback-Leibler
divergence.

Remark that since the forecaster is deterministic, the sequence of observed rewards (up to time
n) Wn (Wn ∈ {0,1}mK for the full information label efficient game andWn ∈ {0,1}m for the label
efficient bandit game) uniquely determines the empirical distribution of playsqn, and in particular
the law ofJn conditionally toWn is the same for any adversary. Thus, if fori ∈ {0, . . . ,K +1} we
notePn

i the law ofWn when the forecaster plays against theith adversary, then one can easily prove
that

KL(P0,Pi)≤ KL(Pn
0,P

n
i ), and KL(Pi ,PK+1)≤ KL(Pn

i ,P
n
K+1).

Now we use the Chain rule for Kullback-Leibler divergence iteratively to introduce the lawsPt
i of

the observed rewardsWt up to timet. We also noteZt = 1 if some rewards are revealed at the end
of roundt andZt = 0 otherwise. With these notations we have in the full information games, for
K > 3,

KL(Pn
i ,P

n
K+1)

= KL(P1
i ,P

1
K+1)+

n

∑
t=2

∑
wt−1

P
t−1
i (wt−1)KL(Pt

i (.|wt−1),P
t
K+1(.|wt−1))

= KL(P1
i ,P

1
K+1)

+
n

∑
t=2

{

∑
wt−1:Zt=1

P
t−1
i (wt−1)

[
KL

(
1+ ε

2
,
1− ε

2
+

ε
K

)
+(K−1)KL

(
1− ε

2
,
1− ε

2
+

ε
K

)]}

=

[
KL

(
1+ ε

2
,
1− ε

2
+

ε
K

)
+(K−1)KL

(
1− ε

2
,
1− ε

2
+

ε
K

)]
Ei

n

∑
t=1

Zt

≤ m

[
KL

(
1+ ε

2
,
1− ε

2
+

ε
K

)
+(K−1)KL

(
1− ε

2
,
1− ε

2
+

ε
K

)]
.

Summing and plugging this into (28) we obtain for the full information games:

1
K

K

∑
i=1

Pi(Jn = i)≤ log2+mKL
(

1+ε
2 , 1−ε

2 + ε
K

)
+m(K−1)KL

(
1−ε

2 , 1−ε
2 + ε

K

)

log(K−1)
. (29)
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In the bandits games we have:

KL(Pn
0,P

n
i )

= KL(P1
0,P

1
i )+

n

∑
t=2

∑
wt−1

P
t−1
0 (wt−1)KL(Pt

0(.|wt−1),P
t
i(.|wt−1))

= KL(P1
0,P

1
i )+

n

∑
t=2

∑
wt−1:Zt=1,It=i

P
t−1
0 (wt−1)KL

(
1− ε

2
,
1+ ε

2

)

= KL

(
1− ε

2
,
1+ ε

2

)
E0

n

∑
t=1

1IZt=1,It=i .

Summing and plugging this into (27) we obtain for the bandits games:

1
K

K

∑
i=1

Pi(Jn = i)≤ 1
K
+

√
m
2K

KL

(
1− ε

2
,
1+ ε

2

)
. (30)

Note that with the same reasoning we obtain for the full information games:

1
K

K

∑
i=1

Pi(Jn = i)≤ 1
K
+

√
m
2

KL

(
1− ε

2
,
1+ ε

2

)
. (31)

Fourth step: Conclusion for deterministic forecasters.

To conclude the proof for deterministic forecaster one needs to plug in (29) (for the full infor-
mation games withK > 3) or (31) (for the full information games withK ∈ {2,3}) or (30) (for the
bandits games) in (26) along with straightforward computations and the following simple formula:

KL(p,q)≤ (p−q)2

q(1−q)
.

Fifth step: Fubini’s theorem to handle non-deterministic forecasters.

Now let us consider a randomized forecaster. Denote byEreward,i the expectation with respect
to the reward generation process of theith adversary,Erand the expectation with respect to the
randomization of the forecaster andEi the expectation with respect to both processes. Then one
has (thanks to Fubini’s Theorem),

1
K

K

∑
i=1

Ei

n

∑
t=1

(gi,t −gIt ,t) = Erand
1
K

K

∑
i=1

Ereward,i

n

∑
t=1

(gi,t −gIt ,t).

Now remark that if we fix the realization of the forecaster’s randomization then the results of the
previous steps apply and in particular we can lower bound1

K ∑K
i=1Ereward,i ∑n

t=1(gi,t −gIt ,t) as before.

Appendix C. Proofs

This section gathers the proofs that have not been provided so far.
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C.1 Proof of Theorem 2 (page 2793)

The proof relies on combining Theorem 27 (page 2807) with Lemma 28 (page2810) forγ = 0, and
with Lemma 29 (page 2811) forγ > 0.

We make use of Theorem 27 and start with straightforward computations to bound the first sum
in (25). We haveψ−1(x) =−η(x− γ/K)−1/q which admits as a primitive

∫
ψ−1(u)du= −η

1−1/q(u−
γ/K)1−1/q. Thus one immediately gets

∫ 1/K

pi,n+1

(−ψ−1)(u)du≤ η
1−1/q

1

K1−1/q
−η(pi,n+1− γ/K)1−1/q

and
pi,n+1(−ψ−1)(pi,n+1) =− γ

K
ψ−1(pi,n+1)+η(pi,n+1− γ/K)1−1/q.

Summing overi proves that

−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1

ψ−1(u)du

)
≤ q

q−1
ηK1/q− γ

K

K

∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to boundρ andAt . First we deal with the caseγ= 0.
Lemma 28 (page 2810) impliesρ≤ exp(B(q+1)/η) since we haveψ

′′

ψ′ (x) =
q+1
−x = q+1

η ψ(x)1/q. The

proof of (6) is concluded byψ′ = q
η ψ(q+1)/q, and

At ≤ B2
t

K

∑
i=1

ψ′ ◦ψ−1(pi,t) = B2
t

K

∑
i=1

q
η

p(q+1)/q
i,t ≤ q

η
B2

t .

For (7), the termAt is controlled differently:

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v
2
i,t =

q
η
(1+ρ2)

K

∑
i=1

p(q+1)/q
i,t v2

i,t ≤
qB
η
(1+ρ2)

K

∑
i=1

pi,tvi,t .

Now we have already seen thatρ ≤ exp(B(q+ 1)/η), henceρ2(1+ ρ2) ≤ 2exp(8Bq/η), which
leads to (7).

The caseγ > 0 is more intricate. This is why we restrict ourselves to a specific form for the
estimatesvi,t , see the assumption in Theorem 2. We start by using Lemma 29 (page 2811) toprove

thatρ ≤ µ. First we haveψ′′

ψ′ =
q+1

η (ψ− γ/K)1/q ≤ q+1
η ψ1/q. Besides, for anya≥ b≥ d we have

a
b ≤ a−d

b−d and thus for anyx< 0, we have

ψ
(
x+ c

ψ(x)
)

ψ(x)
≤

ψ
(
x+ c

ψ(x)
)
− γ

K

ψ(x)− γ
K

=

(
1− c

−xψ(x)

)−q

≤
(

1− c
qη

(
(q−1)K

γ

)(q−1)/q
)−q

.

Thus Lemma 29 gives us

ρ2 ≤ exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1− c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

= µ.
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Next we useψ′ = q
η(ψ− γ/K)(q+1)/q and the form ofvi,t to get

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v
2
i,t ≤

q(1+µ)
η

K

∑
i=1

p(q+1)/q
i,t v2

i,t =
q(1+µ)

η
p(1−q)/q

It ,t c2
t .

Let ζ′ = qcµ(1+µ)
2η . From Theorem 27, we get

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK1/q+ γCn+

ρ2

2

n

∑
t=1

At −
γ
K

n

∑
t=1

K

∑
i=1

vi,t

≤ q
q−1

ηK1/q+ γCn+
n

∑
t=1

ct

(
ζ′p(1−q)/q

It ,t − γ
KpIt ,t

)

≤ q
q−1

ηK1/q+ γCn+max
u>0

(
ζ′u(1−q)/q− γ

Ku

) n

∑
t=1

ct

=
q

q−1
ηK1/q+ γCn+

γ
(q−1)K

(
(q−1)ζ′K

qγ

)q n

∑
t=1

ct

=
q

q−1
ηK1/q+ γCn+ γζ

n

∑
t=1

K

∑
i=1

pi,tvi,t .

The proof of (8) is concluded by using Inequality (2).

C.2 Proof of Theorem 3 (page 2794)

We have

n

∑
t=1

K

∑
i=1

pi,tvi,t =
n

∑
t=1

Ek∼pt vk,t

=
1− γ

η

n

∑
t=1

(
logEi∼qt exp(ηvi,t)− log

[
exp

(
− η

1− γ
Ek∼pt vk,t

)
Ei∼qt exp(ηvi,t)

])

=
1− γ

η

(
S−

n

∑
t=1

log(Dt)

)
,

where

S=
n

∑
t=1

logEi∼qt exp(ηvi,t)

=
n

∑
t=1

log

(
∑K

i=1exp(ηVi,t)

∑K
i=1exp(ηVi,t−1)

)
= log

(
∑K

i=1exp(ηVi,n)

K

)
≥ η max

1≤i≤K
Vi,n− logK

and

Dt = exp

(
− η

1− γ
Ek∼pt vk,t

)
Ei∼qt exp(ηvi,t)

Whenγ = 0, since 0≤ vi,t ≤ Bt , by applying Hoeffding’s inequality, we get log(Dt) ≤ η2B2
t

8 , hence
Inequality (9). Forγ = 0, we can also use Lemma 35 and obtain log(Dt) ≤ η2BΘ(ηB)Ei∼pt vi,t ,
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hence Inequality (10). Forγ satisfying (11), we have

Dt ≤ exp

(
− η

1− γ
Ek∼pt vk,t

)
Ei∼qt

(
1+ηvi,t +Θ(ηB)η2v2

i,t

)
(32)

= exp

(
− η

1− γ
Ek∼pt vk,t

)(
1+

η
1− γ

Ei∼pt vi,t −η
γ∑K

i=1vi,t

K(1− γ)
+Θ(ηB)η2

Ei∼qt v
2
i,t

)

≤ exp

(
− η

1− γ
Ek∼pt vk,t

)(
1+

η
1− γ

Ei∼pt vi,t

)
(33)

≤ 1.

To get (32), we used thatΘ is an increasing function and thatηvi,t ≤ ηB. To get (33), we noticed
that it is trivial when maxi,t pi,tvi,t = 0, and that otherwise, we have

γ∑K
i=1vi,t

K(1− γ)
≥

γ∑K
i=1 pi,tv2

i,t

K(1− γ)maxi,t pi,tvi,t
≥ γ

K maxi,t pi,tvi,t
Ei∼qt v

2
i,t ≥ ηΘ(ηB)Ei∼qt v

2
i,t ,

where the last inequality uses (11). We have thus proved

n

∑
t=1

K

∑
i=1

pi,tvi,t ≥
1− γ

η
logEi∼p1 exp(ηVi,n)≥ (1− γ)

(
max

1≤i≤K
Vi,n−

logK
η

)
,

hence the announced result.

C.3 Recovering Theorem 3 from Theorem 27

We start with straightforward computations to bound the first sum in (25). Wehaveψ−1(x) =
1
η log(x−γ/K) which admits as a primitive

∫
ψ−1(u)du= 1

η [(u− γ/K) log(u− γ/K)−u]. Thus one
immediately gets

−
∫ 1/K

pi,n+1

ψ−1(u)du− pi,n+1ψ−1(pi,n+1)

=
1
η

(
1
K
− 1− γ

K
log

(
1− γ

K

)
− pi,n+1−

γ
K

log
(

pi,n+1−
γ
K

))
.

Summing overi proves that

−
K

∑
i=1

(
pi,n+1ψ−1(pi,n+1)+

∫ 1/K

pi,n+1

ψ−1(u)du

)
=

1− γ
η

log

(
K

1− γ

)
− γ

K

K

∑
i=1

ψ−1(pi,n+1).

With the notations of Theorem 27, we need now to boundρ andAt . For the former, we use Lemma
28 (page 2810) which directly showsρ ≤ exp(ηB). For the latter we distinguish two cases. Ifγ = 0
we use

At ≤ B2
t

K

∑
i=1

ψ′ ◦ψ−1(pi,t) = ηB2
t ,

which concludes the proof of the weakened version of (9) withη
8 replaced byη

2 exp(2ηB). On the
other hand ifγ > 0 we use

At ≤ (1+ρ2)
K

∑
i=1

ψ′ ◦ψ−1(pi,t)v
2
i,t ≤ (1+ρ2)η

K

∑
i=1

pi,tv
2
i,t .
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From Theorem 27, when the weakened version of (11) holds, that is when

γ ≥ K
ηexp(2Bη) [1+exp(2Bη)]

2
max

i,t
pi,tvi,t ,

we have

Cn−
n

∑
t=1

K

∑
i=1

pi,tvi,t

≤ 1− γ
η

log

(
K

1− γ

)
− γ

K

K

∑
i=1

(
n

∑
t=1

vi,t −Cn

)
+

ηexp(2Bη) [1+exp(2Bη)]
2

n

∑
t=1

K

∑
i=1

pi,tv
2
i,t

≤ 1− γ
η

log

(
K

1− γ

)
+ γCn,

hence

(1− γ)
(

Cn+
log(1− γ)

η

)
−

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤ (1− γ)
logK

η
.

This gives the desired result since we have

Cn+
log(1− γ)

η
=

1
η

log

( K

∑
j=1

exp(ηVi,n)

)
≥ max

1≤i≤K
Vi,n.

C.4 Proof of Theorem 8 (page 2797)

We will use the following version of Bernstein’s inequality for martingales.

Theorem 31 LetF1 ⊂ ·· · ⊂ Fn be a filtration, and X1, . . . ,Xn random variables such that|Xt | ≤ b
for some b> 0, Xt isFt-measurable,E(Xt |Ft−1) = 0 andE(X2

t |Ft−1)≤ v for some v> 0. Then, for
any t> 0, we have

P

( n

∑
t=1

Xt ≥ t
)
≤ exp

(
− t2

2nv+2bt/3

)
, (34)

and for anyδ > 0, with probability at least1−δ, we have

n

∑
t=1

Xt ≤
√

2nvlog(δ−1)+
blog(δ−1)

3
.

Proof of Theorem 31Both inequalities come from Result (1.6) of Freedman (1975). The first in-
equality then uses(1+x) log(1+x)−x≥ x2

2+2x/3, while the other uses Inequality (45) of Audibert

et al. (2009). This last inequality allows to remove the
√

2 factor appearing in Lemma A.8 of Cesa-
Bianchi and Lugosi (2006).

We start the proof of Theorem 8 by noting that, sinceRn ≤ n, the result is trivial forδ ≤
2K exp(−m/27) so that we assume hereafter thatδ ≥ 2K exp(−m/27), or equivalentlylog(2Kδ−1)

m ≤
1
27. We consider the eventE on which we simultaneously have

n

∑
t=1

Zt ≤ m, (35)
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−
n

∑
t=1

gIt ,t ≤−
n

∑
t=1

K

∑
k=1

pk,tgk,t +

√
nlog(4δ−1)

2
, (36)

and

max
1≤i≤K

n

∑
t=1

(
gi,t −

η
8ε

−
K

∑
k=1

pk,tgk,t

)(
1− Zt

ε

)
≤ 2

√
nlog(2Kδ−1)

ε
+

log(2Kδ−1)

2ε
. (37)

Let us first prove that this event holds with probability at least 1−δ. From (34), we have

P

( n

∑
t=1

Zt > m

)
≤ exp

(
− m2/16

3m/2+m/6

)
≤ exp

(
− m

27

)
≤ δ

4

So (35) holds with probability at least 1−δ/4. From the concentration of martingales with bounded
differences (Hoeffding, 1963; Azuma, 1967), (36) holds with probability at least 1− δ/4. For
η/(8ε) ≤

√
2− 1 (which is true for our particularη), we can apply Theorem 31 withb =

√
2/ε

and v = 2/ε to the random variables
(
gi,t − η

8ε − ∑K
k=1 pk,tgk,t

)(
1− Zt

ε
)
. We get that for a fixed

i ∈ {1, . . . ,K}, with probability at least 1−δ/(2K), we have

n

∑
t=1

(
gi,t −

η
8ε

−
K

∑
k=1

pk,tgk,t

)(
1− Zt

ε

)
≤ 2

√
nlog(2Kδ−1)

ε
+

log(2Kδ−1)

2ε
.

From a union bound, we get that (37) holds with probability at least 1− δ/2. Using again a union
bound, we thus have proved that the eventE holds with probability at least 1−δ.

Now, on the eventE , by combining (36) and (37), we obtain

Rn = max
1≤i≤K

n

∑
t=1

gi,t −
n

∑
t=1

gIt ,t ≤
√

nlog(4δ−1)

2
+ max

1≤i≤K

n

∑
t=1

gi,t −
n

∑
t=1

K

∑
k=1

pk,tgk,t

≤
√

nlog(4δ−1)

2
+ max

1≤i≤K

n

∑
t=1

gi,t
Zt

ε
−

n

∑
t=1

K

∑
k=1

pk,tgk,t
Zt

ε

+
n

∑
t=1

η
8ε

(
1− Zt

ε

)
+2

√
nlog(2Kδ−1)

ε
+

log(2Kδ−1)

2ε

Since we have∑n
t=1Zt ≤ m, the rewards received by the forecaster are equal to the rewards which

would receive the forecaster that usesZt to decide whether he asks for the gains or not, whatever
∑t−1

s=1Zs is. This enables us to use (9) (which holds with probability one). We obtain

Rn ≤
√

nlog(4δ−1)

2
+

logK
η

+
nη
8ε

+2

√
nlog(2Kδ−1)

ε
+

log(2Kδ−1)

2ε

≤
√

nlog(4δ−1)

2
+

logK
η

+
n2η
6m

+4n

√
log(2Kδ−1)

3m
+

2nlog(2Kδ−1)

3m
.

From the inequalitiesm≤ n, K ≥ 2 and log(2Kδ−1)
m ≤ 1

27, this implies

Rn ≤
10n
3

√
log(2Kδ−1)

m
+

logK
η

+
ηn2

6m
.

The first inequality of the theorem is then obtained by pluggingη =
√

mlogK
n . The second inequality

is derived by integrating the deviations using the standard formulaEW ≤ ∫ 1
0

1
δP(W > log(δ−1))dδ.
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C.5 Proof of Theorem 9 (page 2797)

The proof goes exactly like for Theorem 8. We just use (6) instead of (9).

C.6 Proof of Theorem 12 (page 2799)

The bound is trivial for 9K log(3K) ≥ n. So we consider hereafter thatγ = 2
√

K log(3K)
n < 2

3. The
result is then a direct consequence of Theorem 21 withG0 = n. The inequality onERn comes by
integrating the deviations.

C.7 Proof of Theorem 13 (page 2800)

First note that (16) holds for 9
√

nK ≥ n since we trivially haveRn ≤ n. For 9
√

nK < n, we apply
(18) with G0 = n > 81K, and obtainRn ≤ 8.5

√
nK+

√
2nK log(δ−1). This implies (16) and also

(17) by using Proposition 33.
For the last assertions, we proceed similarly. They trivially hold for 9

√
nK log(3K) ≥ n. For

n> 9
√

nK log(3K), we apply Theorem 20 withG0 = n, and obtain

Rn ≤
9
2

√
nK log(3K)+4

√
nK

log(3K)
+

√
2nK

log(3K)
log(Kδ−1).

By using 1√
log(3K)

≤ 1
log(6)

√
log(3K), this independently implies

Rn ≤ 9
√

nK log(3K)+

√
2nK

log(3K)
log(δ−1),

and by integration,
ERn ≤ 9

√
nK log(3K),

hence the desired inequalities.

C.8 Proof of Theorem 17 (page 2802)

The proof follows the scheme described in Section 5.1.2. In particular let

ν =
γε
βK

+
1

log
(

1− βK
γε

) .

Then we have

−
K

∑
i=1

pi,tvi,t = Zt
pIt ,t

β
log

(
1− βgIt ,t

εpIt ,t

)

≥ Zt

(
−gIt ,t

ε
+

νgIt ,t

ε
log

(
1− βgIt ,t

εpIt ,t

))

≥ −gIt ,t
Zt

ε
− νβ

ε

K

∑
i=1

vi,t .
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Moreover with a simple application of Theorem 31 we have that with probability at least 1−δ,

−
n

∑
t=1

gIt ,t ≤−
n

∑
t=1

gIt ,t
Zt

ε
+

√
2nlogδ−1

ε
+

logδ−1

3ε
.

Now note that the sequenceWt = exp
(
βGi,t − βVi,t

)
, t = 1, . . . ,n, is a supermartingale over the

filtration generated by(gt , It ,Zt), t = 1, . . . ,n. Indeed, we have for anyt ∈ {1, . . . ,n},

EIt∼pt ,Zt exp(−βvi,t) = 1− ε+ ε
(

1− βgi,t

ε

)
= 1−βgi,t ≤ exp(−βgi,t).

Thus, with probability at least 1−δ, we have against deterministic adversaries

max
1≤i≤K

Vi,n ≥ Gmax−
logδ−1

β
,

and against general adversaries

max
1≤i≤K

Vi,n ≥ Gmax−
log(Kδ−1)

β
.

Now we apply (8) of Theorem 2. Letc= − γ
βK log

(
1− βK

γε
)
. If c< qη

( γ
(q−1)K

)(q−1)/q
then we

have

(1− γ)
(

max
1≤i≤K

Vi,n

)
− (1+ γζ)

n

∑
t=1

K

∑
i=1

pi,tvi,t ≤
q

q−1
ηK

1
q ,

where

ζ =
1

(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1− c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

Thus, in the case of a deterministic adversaries, we obtain

Gmax−
n

∑
t=1

gIt ,t

≤
(
γ(1+ζ)+

νβK
ε
)
n+

q
q−1

ηK
1
q +

log(2δ−1)

β
+n

√
2log(2δ−1)

m
+n

log(2δ−1)

3m

=
n
m

((
γ(1+ζ)+νβ′K

)
m+

q
q−1

η′K
1
q +

log(2δ−1)

β′

)
+n

√
2log(2δ−1)

m
+n

log(2δ−1)

3m
, (38)

whereβ′ = β/ε andη′ = ηε. One can see that the term into parenthesis in (38) is exactly the same
than the right hand side of (43), up to the relabelling ofβ andη into β′ andη′. This allows us
to use the same numerical application as in Section C.9 (up to the additional terms outside of the
parenthesis in (43)). One can apply the same technique in the case of a general adversary.
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C.9 Proof of Theorem 18, Corollary 19 and Theorem 20 (page 2803)

Consider parametersq > 1, 0< γ < 1, η > 0 andβ > 0 such thatβK < γ and such that the real

numberc = − γ
βK log

(
1− βK

γ
)

satisfiesc < qη
( γ
(q−1)K

)(q−1)/q
. From (8) of Theorem 2, since we

havevi,t =
ct
pi,t

1IIt=i with ct =− pi,t

β log
(
1− βgi,t

pi,t

)
≤− γ

βK log
(
1− βK

γ
)
= c, we have

(1− γ)
(

max
1≤i≤K

Vi,n

)
+

1+ γζ
β

n

∑
t=1

pIt ,t log

(
1− βgIt ,t

pIt ,t

)
≤ q

q−1
ηK

1
q , (39)

where

ζ =
1

(q−1)K

((q−1)cKµ(1+µ)
2γη

)q
,

with

µ= exp

{
2(q+1)c

η

(
K
γ

)(q−1)/q
(

1− c
qη

(
(q−1)K

γ

)(q−1)/q
)−q}

.

Let

ν =
γ

βK
+

1
log(1−βK/γ)

.

The functionx 7→ 1
x +

1
log(1−x) is increasing on(0,+∞). So we have

1
log(1−βgIt ,t/pIt ,t)

+
pIt ,t

βgIt ,t
≤ ν,

hence
pIt ,t

β
log

(
1− βgIt ,t

pIt ,t

)
≥−gIt ,t +νgIt ,t log

(
1− βgIt ,t

pIt ,t

)
≥−gIt ,t −νβ

K

∑
i=1

vi,t . (40)

Inequality (39) thus implies

(1− γ)
(

max
1≤i≤K

Vi,n

)
− (1+ γζ)

n

∑
t=1

gIt ,t − (1+ γζ)νβ
K

∑
i=1

Vi,n ≤
q

q−1
ηK

1
q ,

which leads to

(
1− γ− (1+ γζ)νβK

)(
max

1≤i≤K
Vi,n

)
− (1+ γζ)

n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q , (41)

We now provide a high probability lower bound of the left-hand side. The technical tool (es-
sentially deviation inequalities for supermartingales) comes from Section 6.8 ofCesa-Bianchi and
Lugosi (2006).

For anyt ∈ {1, . . . ,n}, we have

EIt∼pt exp(−βvi,t) = EIt∼pt exp

{
log

(
1− βgi,t

pi,t

)
1IIt=i

}
= 1−βgi,t ≤ exp(−βgi,t).

This implies that the sequenceWt = exp
(
βGi,t −βVi,t

)
, t = 1, . . . ,n, forms a supermartingale over

the filtration generated by(gt , It), t = 1, . . . ,n. Indeed, we have

E
(

exp(Wt)|(gs, Is),s= 1, . . . , t −1
)
= Egt |(gs,Is),s=1,...,t−1EIt∼pt exp(Wt)≤ exp(Wt−1).
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So, we haveEexp(Wn) ≤ Eexp(W1) ≤ 1, which implies that with probability at least 1− δ, Vi,n ≥
Gi,n− log(δ−1)

β with probability at least 1−δ. So, for any fixedk∈ {1, . . . ,K}, we have

max
1≤i≤K

Vi,n ≥ Gk,n−
log(δ−1)

β
. (42)

Combining (41) and (42), we obtain that for anyδ > 0 and any fixedk ∈ {1, . . . ,K}, with
probability at least 1−δ, we have

(
1− γ− (1+ γζ)νβK

)
Gk,n− (1+ γζ)

n

∑
t=1

gIt ,t ≤
q

q−1
ηK

1
q +

log(δ−1)

β
,

hence

Gk,n−
n

∑
t=1

gIt ,t ≤
(
γ(1+ζ)+νβK

)
Gk,n+

q
q−1

ηK
1
q +

log(δ−1)

β
. (43)

Now, for G0 ≥ 81K, let us take

q= 2, γ = 3

√
K
G0

, β =
1√

2KG0
, and η = 2

√
G0.

Then we havec≈ 1.14,ν ≈ 0.522,µ≤ 2.09,ζ ≤ 0.377, and

Gk,n−
n

∑
t=1

gIt ,t ≤ 4.5

√
K

G2
max

G0
+4
√

KG0+
√

2KG0 log(δ−1). (44)

For deterministic adversaries, the arm achieving a cumulative reward equal to Gmax is deterministic
(it does not depend on the randomization of the forecaster). So, we may take k equal to this fixed
arm, and obtain (18).

To prove the inequality for a fully oblivious adversary, let us takek ∈ argmaxi∈{1,...,K}EGi,n.
From (44) which holds with probability at least 1− δ, it suffices to prove that with probability
at least 1− δ, we haveGk,n ≥ Gmax−

√
8log(Kδ−1)Gmax. Let λ > 0. Since the reward vectors

g1, . . . ,gn are independent, and from the inequality exp(λx) ≤ 1+ [exp(λ)−1]x for any x ∈ [0,1]
(by convexity of the exponential function), for anyj 6= k, from Lemma 35, we have

Eexp(λG j,n) =
n

∏
t=1

Eexp(λg j,t)≤
n

∏
t=1

exp
[(

exp(λ)−1
)
Eg j,t

]
= exp

[(
exp(λ)−1

)
EG j,n

]
,

and

Eexp(−λGk,n) =
n

∏
t=1

Eexp(−λgk,t)

≤
n

∏
t=1

E

(
1−λgk,t +

1
2

λ2g2
k,t

)

≤
n

∏
t=1

(
1−λ

(
1− λ

2

)
Egk,t

)

≤
n

∏
t=1

exp

[
−λ
(

1− λ
2

)
Egk,t

]
= exp

[
−λ
(

1− λ
2

)
EGk,n

]
.
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This implies respectively that for anyj 6= k, with probability at least 1−δ,

G j,n ≤ EG j,n+λΘ(λ)EG j,n+
log(δ−1)

λ
,

and with probability at least 1−δ,

EGk,n ≤ Gk,n+
λ
2
EGk,n+

log(δ−1)

λ
.

By optimizing the free parameterλ (using Lemma 32 below), and from a union bound, with proba-
bility at least 1−δ, we simultaneously have

G j,n ≤ EG j,n+
√

2EG j,n log(Kδ−1)+
log(Kδ−1)

3
,

and
EGk,n ≤ Gk,n+

√
2EGk,n log(Kδ−1).

Since we haveEGk,n ≥ EG j,n, we get consecutivelyGk,n ≥ EG j,n−
√

2EG j,n log(Kδ−1), and after
computations,Gk,n ≥ G j,n−

√
8G j,n log(Kδ−1) for any j 6= k. With probability at least 1− δ, we

thus haveGk,n ≥ Gmax−
√

8log(Kδ−1)Gmax, which concludes the proof of (19).
To prove Corollary 19, first note that (20) holds for 9

√
KGmax ≥ Gmax since we trivially have

Rn ≤ Gmax. For 9
√

KGmax< Gmax, we may apply Theorem 18 withG0 = Gmax sinceGmax> 81K,
and obtainRn ≤ 8.5

√
KGmax+

√
2KGmaxlog(δ−1). This implies (20) and (21).

Lemma 32 Let Θ(λ) = exp(λ)−1−λ
λ2 . For any A> 0, infλ>0

{
λΘ(λ)+ A2

2λ
}
≤ A+A2/6.

Proof Consideringλ = log(1+A), we have infλ>0
{

λΘ(λ) + A2

2λ
}
≤ log(1+A)Θ[log(1+A)] +

A2

2log(1+A) =A+ A2

6 − 1+A+ A2
6

log(1+A)Φ(A) whereΦ(A), log(1+A)− A+ A2
2

1+A+ A2
6

. SinceΦ(0) = 0 andΦ′(A) =

A4

36(1+A)(1+A+A2/6)2 ≥ 0, we getΦ(A)≥ 0, hence the result.

To prove Theorem 20, we replace (42), which holds with probability at least 1−δ, by

max
1≤i≤K

Vi,n ≥ Gmax−
log(δ−1)

β
,

which, by a union bound, holds with probability at least 1−Kδ. (It is this union bound that makes
the logK factor appears in the bound.) This leads to the following modified version of (43): with
probability 1−Kδ,

Gmax−
n

∑
t=1

gIt ,t ≤
(
γ(1+ζ)+νβK

)
Gmax+

q
q−1

ηK
1
q +

log(δ−1)

β
.

Now, for G0 ≥ 81K log(3K), let us takeq= 2,

γ = 3

√
K log(3K)

G0
, β =

√
log(3K)

2KG0
, and η = 2

√
G0

log(3K)
.
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Then we havec≈ 1.14,ν ≈ 0.522,µ≤ 2.09,ζ ≤ 0.377, and

Gmax−
n

∑
t=1

gIt ,t ≤ 4.5

√
G2

max

G0
K log(3K)+4

√
KG0

log(3K)
+

√
2KG0

log(3K)
log(δ−1).

This inequality holds with probability at least 1−Kδ. This implies the result of Theorem 20.

C.10 Proof of Theorem 21 (page 2803)

Consider parametersq> 1, 0< γ< 1,η> 0 andβ> 0 such thatβK < γ. Introducec=− γ
βK log

(
1−

βK
γ
)
. We have maxi,t pi,tvi,t ≤ c. So (11) holds as soon as

γ ≥ KηcΘ
(
− η

β
log
(

1− βK
γ

))
. (45)

From (12) and as in the proof of Theorem 13, by using (40) withν = γ
βK + 1

log(1−βK/γ) , we obtain

(1− γ)
(

max
1≤i≤K

Vi,n

)
−

n

∑
t=1

gIt ,t −νβ
K

∑
i=1

Vi,n ≤ (1− γ)
logK

η
,

hence

(1− γ−νβK)

(
max

1≤i≤K
Vi,t

)
−

n

∑
t=1

gIt ,t ≤ (1− γ)
logK

η
.

From the same argument as in the proof of Theorem 18, for anyi ∈{1, . . . ,K}, we haveEexp
(
βGi,n−

βVi,n
)
≤ 1, and for anyδ > 0,Vi,n ≥ Gi,n− log(δ−1)

β holds with probability at least 1−δ. By a union
bound, we get that with probability at least 1−Kδ,

max
1≤i≤K

Vi,n ≥ Gmax−
log(δ−1)

β
.

With probability at least 1−δ, we thus have

Gmax−
n

∑
t=1

gIt ,t ≤ (γ+νβK)Gmax+
log(Kδ−1)

β
+

logK
η

.

This inequality holds for any parametersq> 1, 0< γ < 1, η > 0 andβ > 0 such that the inequality
βK < γ and (45) hold. We choose

γ = 2

√
K log(3K)

G0
, β =

√
log(3K)

2KG0
, and η = 2

√
log(3K)

KG0
,

which givesc≈ 1.23,ν ≈ 0.536, and

Gmax−
n

∑
t=1

gIt ,t ≤
5
2

√
G2

max

G0
K log(3K)+

√
2KG0

log(3K)
log(Kδ−1)+

1
2

√
KG0 log(3K).
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C.11 Proof of Theorem 22 (page 2804)

Consider parameters 0< γ < 1, η > 0 andβ > 0. We have maxi,t pi,tvi,t ≤ 1+ βK
γ and maxi,t vi,t ≤

(1+β)K
γ . So (11) holds as soon as

γ ≥ Kη
(

1+
βK
γ

)
Θ
(

η(1+β)K
γ

)
. (46)

Then, from (12), we have

(1− γ)
(

max
1≤i≤K

Vi,n

)
−

n

∑
t=1

gIt ,t −βnK ≤ (1− γ)
logK

η
.

Let ξt = max1≤i≤K Vi,t − min1≤ j≤K Vj,t and ξ = max1≤t≤n ξt . Consider a fixed switching strat-
egy (i1, . . . , in) ∈ {1, . . . ,K}n, and letV(i1,...,in) = ∑n

t=1vit ,t . One can easily check that max
1≤i≤K

Vi,n ≥
V(i1,...,in)−ξS(i1, . . . , in), and consequently

max
1≤i≤K

Vi,n ≥ max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in)−ξS.

Since exp(−x)≤ 1−x+x2/2 for x≤ 0, we have for anyt ∈ {1, . . . ,n} and anyi ∈ {1, . . . ,K}

EIt∼pt exp

(
−2βgi,t

1IIt=i

pi,t

)
≤ EIt∼pt

(
1−2βgi,t

1IIt=i

pi,t
+2β2g2

i,t
1IIt=i

p2
i,t

)

= 1−2βgi,t +2β2 g2
i,t

pi,t

≤ 1−2β
(

gi,t −
β

pi,t

)

≤ exp

(
−2β

(
gi,t −

β
pi,t

))
,

hence

EIt∼pt exp
(
2β(gi,t −vi,t)

)
≤ 1.

For a fixed(i1, . . . , in), by using this inequalityn times corresponding to then time steps and their
associated actions, this impliesEexp

(
2β(G(i1,...,in)−V(i1,...,in))

)
≤ 1, hence with probability at least

1−δ,

G(i1,...,in)−V(i1,...,in) ≤
log(δ−1)

2β
.

Let M = ∑S
j=0

(n−1
j

)
K(K −1) j be the number of switching strategies of size not larger thanS. By a

union bound, we get that with probability at least 1−δ,

max
(i1,...,in):S(i1,...,in)≤S

V(i1,...,in) ≥ max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
log(Mδ−1)

2β
.
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By putting the previous inequalities together, we obtain that with probability at least 1−δ,

(1− γ) max
(i1,...,in):S(i1,...,in)≤S

G(i1,...,in)−
n

∑
t=1

gIt ,t ≤ βnK+(1− γ)
logK

η
+ξS+

log(Mδ−1)

2β
,

hence

RS
n = max

(i1,...,in):S(i1,...,in)≤S
G(i1,...,in)−

n

∑
t=1

gIt ,t ≤ (γ+βK)n+
logK

η
+ξS+

log(Mδ−1)

2β
.

We now upper boundM andξ. We have

M =
S

∑
j=0

(
n−1

j

)
K(K−1) j ≤ KS+1

S

∑
j=0

(
n−1

j

)
≤ KS+1

(
en
S

)S

=
exp(s)

2
,

where the second inequality comes from Sauer’s lemma. Let

ρ̃ = exp
(
(1+β)

Kη
γ

)1+Kβ
1− γ

.

By contradiction, we now prove

ξ ≤ ρ̃− 1
η

log

(
β
ρ̃
− γ

K

)
. (47)

To this end, we start by boundingCt −Ct−1. By the mean value theorem, with the notations of the
third step of the proof of Theorem 27, there existsW ∈ [Vt−1,Vt ] such that

Ct −Ct−1 =C(Vt)−C(Vt−1)

=
K

∑
i=1

∂C
∂xi

(W)(Vi,t −Vi,t−1)

=
K

∑
i=1

hi(W)

∑K
j=1h j(W)

gi,t1IIt=i +β
fi(Vi,t−1)

=
1

∑K
j=1 η( f j(W)− γ/K)

K

∑
i=1

ηhi(W)
gi,t1IIt=i +β

hi(Vi,t−1)+ηγ/K

≤ 1
1− γ

K

∑
i=1

hi(W)
1IIt=i +β
hi(Vt−1)

≤ ρ
1− γ

K

∑
i=1

(1IIt=i +β) = ρ
1+Kβ
1− γ

.

From Lemma 28 (page 2810), we haveρ ≤ exp
(
(1 + β)Kη

γ
)
, hence Ct − Ct−1 ≤

exp
(
(1+β)Kη

γ

)
1+Kβ
1−γ = ρ̃. If (47) does not hold, then from Lemma 1, we have

max
1≤t≤n

(
Ct − min

1≤ j≤K
Vj,t

)
> ρ̃−ψ−1(β/ρ̃).

Besides we haveC0−min1≤ j≤K Vj,0 =−ψ−1(1/K)≤ ρ̃−ψ−1(β/ρ̃), sinceKβ ≤ ρ̃. So there exist
T ∈ {1, . . . ,n} andℓ ∈ {1, . . . ,K} such thatCT−1 −Vℓ,T−1 ≤ ρ̃−ψ−1(β/ρ̃) andCT −Vℓ,T > ρ̃−
ψ−1(β/ρ̃). In particular, we haveψ(Vℓ,T −CT + ρ̃)< β

ρ̃ , hence

Vℓ,T −Vℓ,T−1 ≥
β

pℓ,T
=

β
ψ(Vℓ,T−1−CT−1)

≥ β
ψ(Vℓ,T −CT + ρ̃)

≥ ρ̃ ≥CT −CT−1,
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which contradicts the inequalityCT−1−Vℓ,T−1 <CT −Vℓ,T . This ends the proof of (47). We have
thus proved that for any 0< γ < 1, η > 0 andβ > 0 such that (46) holds, we have

RS
n ≤ (γ+βK)n+

logK
η

+S

{
ρ̃− 1

η
log

(
β
ρ̃
− γ

K

)}
+

log(Kδ−1)

2β
+

Slog(Ken/S)
2β

,

with ρ̃= 1+Kβ
1−γ exp

(
(1+β)Kη

γ
)
. For the numerical application, we first notice that the bound trivially

holds for 7
√

Ks≥√
n. For 7

√
Ks<

√
n, with s= Slog

(
enK

S

)
+2logK, we choose

γ =
√

Ks
2n

, β = 3

√
s

nK
, and η =

1
5

√
s

nK
.

We then useγ ≤ 1
7
√

2
, βK ≤ 3

7, β ≤ 3
14 to deducẽρ ≤ 2.25, andρ̃S≤ 0.05

√
nKs. We check (46) by

the upper boundKη
γ
(
1+ βK

γ
)
Θ
(η(1+β)K

γ
)
≤ 0.84< 1. We also use− log

(β
ρ̃ −

γ
K

)
≤ 1

2 log
(
3nK/s

)
≤

1
2 log

(
3nK/S

)
. We thus have

RS
n ≤

(
3+

1√
2
+0.05+

5
2
+

1
6

)√
nKs+

log(δ−1)

2β
≤ 6.5

√
nKs+

log(δ−1)

6

√
nK
s

The last inequality follows by integrating the deviations.

C.12 Proof of Theorem 24 (page 2806)

This proof requires some new arguments compared to the one for UCB1. First, we need to decouple
the arm, while not being too loose. This is achieved by introducing appropriate stopping times. The
decoupled upper bound on the pseudo-regret is (51). Secondly, weuse peeling arguments to tightly
control the terms in the right-hand side of (51).

We may assumeµ1 ≥ . . .≥ µK . Using the trivial equality∑K
i=1ETi(n) = n, we have

Rn = max
1≤i≤K

E

n

∑
t=1

(
gi,t −gIt ,t

)

= n
(

max
1≤i≤K

Egi,t

)
−

n

∑
t=1

EgIt ,t

= n
(

max
1≤i≤K

µi

)
−

n

∑
t=1

EµIt

= n
(

max
1≤i≤K

µi

)
−E

n

∑
t=1

µIt

=

( K

∑
i=1

ETi(n)

)(
max

1≤i≤K
µi

)
−E

K

∑
i=1

µiTi(n) =
K

∑
i=1

∆iETi(n).

First step: Decoupling the arms

For an armk0, we trivially have∑K
k=1 ∆kTk(n) ≤ n∆k0 + ∑K

k=k0+1 ∆kTk(n). Let ∆K+1 = +∞,

zk = µ1− ∆k
2 for k0 < k ≤ K +1 andzk0 = +∞. Let Z = min1≤s≤nB1,s andWj,k = 1IZ∈[zj+1,zj )(∆k−
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∆k0)Tk(n). By usingE∑k0
k=1Tk(n) = n−E∑K

k=k0+1Tk(n), we get

Rn = E

K

∑
k=1

∆kTk(n)≤ n∆k0 +E

K

∑
k=k0+1

(∆k−∆k0)Tk(n).

We have

K

∑
k=k0+1

(∆k−∆k0)Tk(n) =
K

∑
k=k0+1

K

∑
j=k0

Wj,k =
K

∑
j=k0

j

∑
k=k0+1

Wj,k+
K

∑
j=k0

K

∑
k= j+1

Wj,k. (48)

An Abel transformation takes care of the first sum of (48):

K

∑
j=k0

j

∑
k=k0+1

Wj,k ≤
K

∑
j=k0

1IZ∈[zj+1,zj )n(∆ j −∆k0) = n
K

∑
j=k0+1

1IZ<zj (∆ j −∆ j−1). (49)

To bound the second sum of (48), we introduce the stopping timesτk =min{t : Bk,t < zk} and remark
that, by definition of MOSS, we have{Z ≥ zk} ⊂ {Tk(n)≤ τk}, since once we have pulledτk times
armk its index will always be lower than the index of arm 1. This implies

K

∑
j=k0

K

∑
k= j+1

Wj,k =
K

∑
k=k0+1

k−1

∑
j=k0

Wj,k =
K

∑
k=k0+1

1IZ≥zk∆kTk(n)≤
K

∑
k=k0+1

τk∆k. (50)

Combining (48), (49) and (50) and taking the expectation, we get

Rn ≤ n∆k0 +
K

∑
k=k0+1

∆kEτk+n
K

∑
k=k0+1

P(Z < zk)(∆k−∆k−1). (51)

Let δ0=
√

75K
n and setk0 such that∆k0 ≤ δ0<∆k0+1. If k0=K, we trivially haveRn≤ nδ0≤

√
75nK

so that (22) holds trivially. In the following, we thus considerk0 < K.

Second step: BoundingEτk for k0+1≤ k≤ K.

Let log+(x) = max(log(x),0). Forℓ0 ∈ N, we have

Eτk− ℓ0 =
+∞

∑
ℓ=0

P(τk > ℓ)− ℓ0 (52)

≤
+∞

∑
ℓ=ℓ0

P(τk > ℓ) =
+∞

∑
ℓ=ℓ0

P(∀t ≤ ℓ,Bk,t > zk)

≤
+∞

∑
ℓ=ℓ0

P

(
µ̂k,ℓ−µk ≥

∆k

2
−
√

log+ (n/Kℓ)

ℓ

)
.

Now let us takeℓ0 = ⌈7log
(

n
K ∆2

k

)
/∆2

k⌉ with ⌈x⌉ the smallest integer larger thanx. Forℓ≥ ℓ0, since
k> k0, we have

log+
( n

Kℓ

)
≤ log+

(
n

Kℓ0

)
≤ log+

(
n∆2

k

7K

)
≤ ℓ0∆2

k

7
≤ ℓ∆2

k

7
,
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hence∆k
2 −

√
log+(n/(Kℓ))

ℓ ≥ c∆k, with c= 1
2 − 1√

7
. Therefore, by using Hoeffding’s inequality and

(52), we get

Eτk− ℓ0 ≤
+∞

∑
ℓ=ℓ0

P(µ̂k,ℓ−µk ≥ c∆k)

≤
+∞

∑
ℓ=ℓ0

exp
(
−2ℓ(c∆k)

2)= exp
(
−2ℓ0(c∆k)

2
)

1−exp(−2(c∆k)2)
≤ exp(−14c2 log(75))

1−exp
(
−2c2∆2

k

) ,

where the last inequality usesℓ0∆2
k ≥ 7log(75). Plugging the value ofℓ0, we obtain

∆kEτk ≤ ∆k

(
1+

7log
(

n
K ∆2

k

)

∆2
k

)
+

∆k exp(−14c2 log(75))

1−exp
(
−2c2∆2

k

)

≤ 1+7
log
(

n
K ∆2

k

)

∆k
+

exp(−14c2 log(75))
2c2(1−c2)∆k

,

where the last step uses that, since 1−exp(−x)≥ x−x2/2 for anyx≥ 0, we have

1

1−exp
(
−2c2∆2

k

) ≤ 1

2c2∆2
k −2c4∆4

k

≤ 1

2c2∆2
k(1−c2)

Third step: Bounding n∑K
k=k0+1P(Z < zk)(∆k−∆k−1).

Let Xt denote the reward obtained by arm 1 when it is drawn for thet-th time. The random
variablesX1,X2, . . . are i.i.d. so that we have the maximal inequality (Hoeffding, 1963, Inequality
(2.17)): for anyx> 0 andm≥ 1,

P

(
∃s∈ {1, . . . ,m},

s

∑
t=1

(µ1−Xt)> x

)
≤ exp

(
−2x2

m

)
.

Sincezk = µ1−∆k/2 and sinceu 7→ P(Z < µ1−u/2) is a nonincreasing function, we have

K

∑
k=k0+1

P(Z < zk)(∆k−∆k−1)≤ ∆k0+1P(Z < zk0+1)+
∫ 1

∆k0+1

P

(
Z < µ1−

u
2

)
du. (53)

We will now concentrate on upper boundingP
(
Z < µ1− u

2

)
for a fixed u ∈ [δ0,1]. Let f (u) =

8log
(√ n

K u
)
/u2. We have

P

(
Z < µ1−

1
2

u

)
= P

(
∃1≤ s≤ n :

s

∑
t=1

(µ1−Xt)>

√
slog+

( n
Ks

)
+

su
2

)

≤ P

(
∃1≤ s≤ f (u) :

s

∑
t=1

(µ1−Xt)>

√
slog+

( n
Ks

))

+ P

(
∃ f (u)< s≤ n :

s

∑
t=1

(µ1−Xt)>
su
2

)
.
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For the first term, we use a peeling argument with a geometric grid of the form1
2ℓ+1 f (u) ≤ s≤

1
2ℓ f (u). The numerical constant inδ0 ensures thatf (u)≤ n/K, which implies that for anys≤ f (u),
log+

(
n

Ks

)
= log

(
n

Ks

)
. We have

P

(
∃1≤ s≤ f (u) :

s

∑
t=1

(µ1−Xt)>

√
slog

( n
Ks

))

≤
+∞

∑
ℓ=0

P

(
∃ 1

2ℓ+1 f (u)≤ s≤ 1
2ℓ

f (u) :
s

∑
t=1

(µ1−Xt)>

√
f (u)
2ℓ+1 log

(
n2ℓ

K f (u)

))

≤
+∞

∑
ℓ=0

exp


−2

f (u) 1
2ℓ+1 log

(
n2ℓ

K f (u)

)

f (u) 1
2ℓ


=

+∞

∑
ℓ=0

K f (u)
n

1
2ℓ

=
16K
nu2 log

(√
n
K

u

)
.

For the second term we also use a peeling argument but with a geometric grid of the form 2ℓ f (u)≤
s≤ 2ℓ+1 f (u):

P

(
∃s∈ ⌈ f (u)⌉, . . . ,n} :

s

∑
t=1

(µ1−Xt)>
su
2

)

≤
+∞

∑
ℓ=0

P

(
∃2ℓ f (u)≤ s≤ 2ℓ+1 f (u) :

s

∑
t=1

(µ1−Xt)> 2ℓ−1 f (u)u

)

≤
+∞

∑
ℓ=0

exp

(
−2

(
2ℓ−1 f (u)u

)2

f (u)2ℓ+1

)

=
+∞

∑
ℓ=0

exp
(
−2ℓ f (u)u2/4

)

≤
+∞

∑
ℓ=0

exp
(
−(ℓ+1) f (u)u2/4

)
=

1
exp( f (u)u2/4)−1

=
1

nu2/K−1
.

Putting together the last three computations, we obtain

P

(
Z < µ1−

1
2

u

)
≤ 16K

nu2 log

(√
n
K

u

)
+

1
nu2/K−1

.
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Plugging this into (53) gives

K

∑
k=k0+1

P(Z < zk)(∆k−∆k−1)

≤ 16K
n∆k0+1

log

(√
n
K

∆k0+1

)
+

∆k0+1

n∆2
k0+1/K−1

+

[
−16K

nu
log

(
e

√
n
K

u

)
+

√
K
4n

log

(√ n
K u−1√ n
K u+1

)]1

∆k0+1

≤ 16K
n∆k0+1

log

(
en∆2

k0+1

K

)
+

∆k0+1

n∆2
k0+1/K−1

+

√
K
4n

log

(√ n
K ∆k0+1+1√ n
K ∆k0+1−1

)

≤ 16K
n∆k0+1

log

(
en∆2

k0+1

K

)
+

(
75
74

+

√
75√

75−1

)
K

n∆k0+1

where the penultimate inequality uses∆k0+1 ≥
√

75K
n and log(1+x)≤ x for anyx≥ 0.

Gathering the results of the three steps, we get

Rn ≤ n∆k0 +
K

∑
k=k0+1

(
1+7

log
(

n
K ∆2

k

)

∆k
+

exp(−14c2 log(75))
2c2(1−c2)∆k

)

+
16K

∆k0+1
log

(
en∆2

k0+1

K

)
+

(
75
74

+

√
75√

75−1

)
K

∆k0+1

≤ n∆k0 +K+(16+7)K
log
(

n
K ∆2

k0+1

)

∆k0+1
+(16+16)

K
∆k0+1

≤ nδ01I∆≤δ0 +23K
log
(

n
K ∆2

k0+1

)

∆k0+1
+

33K
∆k0+1

≤ 23K
log
(

n
K max(∆,δ0)

2
)

max(∆,δ0)
+

108K
max(∆,δ0)

≤ 23K
log
(

110n
K max(∆,δ0)

2
)

max(∆,δ0)
,

which implies (22) and alsoRn ≤ 24
√

nK. Since Proposition 34 impliesERn−Rn ≤
√

nK, we have
proved (23). For (24), Proposition 36 implies

ERn−Rn ≤ min

(
K
∆
,

√
nK
2

)
≤ K

√
75

2max(∆,δ0)
,

which implies

ERn ≤ 23K
log
(

133n
K max(∆,δ0)

2
)

max(∆,δ0)
.
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Appendix D. Pseudo-regret vs Expected Regret

The first two propositions hold for the four prediction games considered inthis work and defined in
Figure 1.

Proposition 33 For deterministic adversaries, we haveERn = Rn. For oblivious adversaries, we
have

ERn ≤ sup
deterministic adversaries

Rn.

In particular, this means that the worst oblivious adversary for a forecaster cannot lead to a larger
regret than the worst deterministic adversary.
Proof The first assertion is trivial. For the second one, letEadv be the expectation with respect to
the eventual randomization of the adversary andEfor be the expectation with respect to the random-
ization of the forecaster. For oblivious adversaries, we haveERn = EadvEforRn, hence

ERn ≤ sup
deterministic adversaries

EforRn = sup
deterministic adversaries

Rn.

While the previous proposition is useful for upper bounding the regret of a forecaster against the
worst oblivious adversary, it does not say anything about the difference between the expected regret
and the pseudo-regret for a given adversary. The next proposition gives an upper bound on this dif-
ference for fully oblivious adversaries, which are (oblivious) adversaries generating independently
the reward vectors.

Proposition 34 For fully oblivious adversaries, we have

ERn−Rn ≤
√

nlogK
2

,

and

ERn−Rn ≤
√

2log(K)max
i

E

n

∑
t=1

gi,t +
logK

3
.

Proof The proof is similar to the one of the upper bound on the expected supremum of a finite
number of subgaussian random variables. We use the following lemma.

Lemma 35 Let λ > 0 and W a random variable taking its values in[0,1]. We have

Eexp(λW)≤ exp
[(

exp(λ)−1
)
EW
]
.

Proof By convexity of the exponential function, we have exp(λx) ≤ 1+
(

exp(λ)− 1
)
x for any

x∈ [0,1]. So we haveEexp(λW)≤ 1+
(

exp(λ)−1
)
EW, hence Lemma 35.
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Let λ > 0, then by Jensen’s inequality and Lemma 35, we have

Emax
i

n

∑
t=1

gi,t ≤ E
1
λ

log
K

∑
i=1

exp

(
λ

n

∑
t=1

gi,t

)

≤ 1
λ

log
K

∑
i=1

E

n

∏
t=1

exp(λgi,t)

=
1
λ

log
K

∑
i=1

n

∏
t=1

Eexp(λgi,t)

≤ 1
λ

log
K

∑
i=1

n

∏
t=1

exp
(
[exp(λ)−1]Egi,t

)

≤ logK
λ

+
exp(λ)−1

λ
max

i
E

n

∑
t=1

gi,t .

This implies

ERn−Rn ≤ inf
λ>0

(
logK

λ
+λΘ(λ)max

i
E

n

∑
t=1

gi,t

)
,

whereΘ(λ) = exp(λ)−1−λ
λ2 . By using Lemma 32, one obtains the second inequality of the theorem.

Instead of using a variant of Bernstein’s argument to controlEexp(λgi,t), one can use Hoeffding’s

inequality. This leads to the first inequality by takingλ =
√

2logK
n .

We can strengthen the previous result on the difference between the expected regret and the
pseudo-regret when we consider the stochastic bandit game, in which therewards coming from a
given arm form an i.i.d. sequence. In particular, when there is a unique optimal arm, the following
theorem states that the difference is exponentially small withn (instead of being of order

√
n).

Proposition 36 For a givenδ ≥ 0, let I =
{

i ∈ {1, . . . ,K} : ∆i ≤ δ
}

be the set of arms “δ-close” to
the optimal ones, and J= {1, . . . ,K} \ I the remaining set of arms. In the stochastic bandit game,
we have

ERn−Rn ≤
√

nlog|I |
2

+∑
i∈J

1
∆i

exp

(
− n∆2

i

2

)
,

and also

ERn−Rn ≤
√

nlog|I |
2

+∑
i∈J

{
8σ2

i +4∆i/3
∆i

exp

(
− n∆2

i

8σ2
i +4∆i/3

)

+
8σ2

i∗ +4∆i/3
∆i

exp

(
− n∆2

i

8σ2
i∗ +4∆i/3

)}
,

where for any j∈ {1, . . . ,K}, σ2
j denotes the variance of the reward distribution of arm j.

In particular when there exists a unique arm i∗ such that∆i∗ = 0, we have

ERn−Rn ≤ ∑
i 6=i∗

1
∆i

exp

(
− n∆2

i

2

)
.
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Note that the assumption on the uniqueness of the optimal arm in the last statementis necessary
as we already discussed in Remark 25.
Proof Let W(1)

n = maxi∈I ∑n
t=1gi,t −∑n

t=1gi∗,t andW(2)
n = maxj∈{1,...,K} ∑n

t=1g j,t −maxi∈I ∑n
t=1gi,t .

We haveERn−Rn = EW(1)
n +EW(2)

n . From the same argument as in the proof of Proposition 34,
we have

EW(1)
n ≤

√
nlog|I |

2
.

Besides, we have

EW(2)
n =

∫ +∞

0
P(W(2)

n > u)du

≤ ∑
j∈J

∫ +∞

0
P

(
n

∑
t=1

g j,t −max
i∈I

n

∑
t=1

gi,t > u

)
du

≤ ∑
j∈J

∫ +∞

0
P(G j,n−Gi∗,n > u)du

= ∑
i∈J

∫ +∞

0
P(Gi,n−EGi,n+EGi∗,n−Gi∗,n > u+n∆i)du

≤ ∑
i∈J

∫ +∞

0

{
P

(
Gi,n−EGi,n >

u+n∆i

2

)
+P

(
EGi∗,n−Gi∗,n >

u+n∆i

2

)}
du.

This last integrand is upper bounded by 2exp
(
− (u+n∆i)

2

2n

)
from Hoeffding’s inequality, and by

exp
(
− (u+n∆i)

2

8nσ2
i +4(u+n∆i)/3

)
+exp

(
− (u+n∆i)

2

8nσ2
i∗+4(u+n∆i)/3

)
from Bernstein’s inequality. To control the two

corresponding integrals, we note that for a nondecreasing convex functionχ going to infinity at+∞,
we have ∫ +∞

x
exp(−χ(u))du≤

∫ +∞

x

χ′(u)
χ′(x)

exp(−χ(u))du=
exp(−χ(x))

χ′(x)
.

We apply this inequality to the functionsr 7→ r2

2n andr 7→ r2

8nσ2
i +4r/3

to obtain respectively

EW(2)
n ≤ 2∑

i∈J

∫ +∞

n∆i

exp

(
−u2

2n

)
du≤ ∑

i∈J

1
∆i

exp

(
− n∆2

i

2

)
,

and
∫ +∞

n∆i

exp

(
− u2

8nσ2
i +4u/3

)
du≤ (8σ2

i +4∆i/3)2

∆i(16σ2
i +4∆i/3)

exp

(
− n∆2

i

8σ2
i +4∆i/3

)

≤ 8σ2
i +4∆i/3

∆i
exp

(
− n∆2

i

8σ2
i +4∆i/3

)
,

hence

EW(2)
n ≤ ∑

i∈J

{
8σ2

i +
4∆i
3

∆i
exp

(
− n∆2

i

8σ2
i +4∆i/3

)
+

8σ2
i∗ +

4∆i
3

∆i
exp

(
− n∆2

i

8σ2
i∗ +4∆i/3

)}
.
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C. Allenberg, P. Auer, L. Gÿorfi, and G. Ottucśak. Hannan consistency in on-line learning in case of
unbounded losses under partial monitoring. InALT, volume 4264 ofLecture Notes in Computer
Science, pages 229–243. Springer, 2006.
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