Minimax Policies for Combinatorial Prediction Games

Sébastien Bubeck ${ }^{1}$

joint work with Jean-Yves Audibert ${ }^{2,3}$ and Gábor Lugosi ${ }^{4}$
${ }^{1}$ Centre de Recerca Matemàtica, Barcelona, Spain
${ }^{2}$ Imagine, Univ. Paris Est, and Sierra
${ }^{3}$ CNRS/ENS/INRIA, Paris, France
${ }^{4}$ ICREA and Pompeu Fabra University, Barcelona, Spain

Combinatorial prediction game

Adversary

Player

Combinatorial prediction game

Adversary

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Notation

$\longleftrightarrow V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} V_{t}-\min _{u \in S} \mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} u
$$

$\leadsto \leadsto V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$\leftrightarrow \leadsto V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} V_{t}-\min _{u \in S} \mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} u
$$

Loss assumptions

Definition $\left(L_{\infty}\right)$
We say that the adversary statisfies the L_{∞} assumption: if $\left\|\ell_{t}\right\|_{\infty} \leq 1$ for all $t=1, \ldots, n$.

Definition (L_{2})

We say that the adversary statisfies the L_{2} assumption: if $\ell_{t}^{T} v \leq 1$ for all $t=1, \ldots, n$ and $v \in \mathcal{S}$.

Loss assumptions

Definition $\left(L_{\infty}\right)$

We say that the adversary statisfies the L_{∞} assumption: if $\left\|\ell_{t}\right\|_{\infty} \leq 1$ for all $t=1, \ldots, n$.

Definition $\left(L_{2}\right)$

We say that the adversary statisfies the L_{2} assumption: if $\ell_{t}^{T} v \leq 1$ for all $t=1, \ldots, n$ and $v \in \mathcal{S}$.

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in S: V_{i}=1} P_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{\top} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{\top}\right)$ in the bandit game.

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\ell_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{+}=P_{t}^{+} V_{+} V_{t}^{\top} \ell_{+}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{T} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Expanded Exponentially weighted average forecaster (Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n},
$$

which is the optimal rate, Dani, Hayes and Kakade [2008]

- Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n}
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010] - We show that, for any η, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n}
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

But this is suboptimal, Koolen, Warmuth and Kivinen [2010] and an L_{∞} adversary such that

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n}
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

- Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n}
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].
and an L_{∞} adversary such that

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n}
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

- Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n}
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

- We show that, for any η, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that

$$
R_{n} \geq 0.02 d^{3 / 2} \sqrt{n}
$$

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

$$
\lim _{s \rightarrow 0, s>0}(u-v)^{T} \nabla F((1-s) u+s v)=+\infty .
$$

Bregman divergence

Definition

The Bregman divergence $D_{F}: \mathcal{D} \times \operatorname{int}(\mathcal{D})$ associated to a Legendre function F is defined by

$$
D_{F}(u, v)=F(u)-F(v)-(u-v)^{T} \nabla F(v)
$$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

(2) $w_{t+1} \in \operatorname{argmin} D_{F}\left(w, w_{t+1}^{\prime}\right)$ $w \in \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

(2) $w_{t+1} \in \operatorname{argmin} D_{F}\left(w, w_{t+1}^{\prime}\right)$ $w \in \operatorname{Conv}(\mathcal{S})$
(3) $p_{t+1} \in \Delta(\mathcal{S}): w_{t+1}=\mathbb{E}_{V \sim p_{t+1}} V$

${ }^{w_{t+1}}$

General regret bound for CLEB

Theorem

If F admits a Hessian $\nabla^{2} F$ always invertible then,

$$
R_{n} \lesssim \operatorname{diam}_{D_{F}}(\mathcal{S})+\mathbb{E} \sum_{t=1}^{n} \tilde{\ell}_{t}^{T}\left(\nabla^{2} F\left(w_{t}\right)\right)^{-1} \tilde{\ell}_{t}
$$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

\int Full Info: Hedge
Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

(Full Info: Hedge
Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]
Bandit: new algorithm

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{c}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1
\end{array}\right.
$$

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{l}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1: \text { LinPoly }
\end{array}\right.
$$

Different instances of CLEB: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Different instances of CLEB: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Minimax regret for combinatorial prediction games

$$
\bar{R}_{n, \infty, 2}=\inf _{\text {strategy }} \max _{\mathcal{S} \subset\{0,1\}^{d}} \sup _{L_{\infty}, L_{2} \text { adversaries }} R_{n}
$$

Theorem

Let $n \geq d^{2}$. In the full information and semi-bandit games, we have.

and in the bandit game:

Minimax regret for combinatorial prediction games

$$
\bar{R}_{n, \infty, 2}=\inf _{\text {strategy }} \max _{\mathcal{S} \subset\{0,1\}^{d}} \sup _{L_{\infty}, L_{2} \text { adversaries }} R_{n}
$$

Theorem

Let $n \geq d^{2}$. In the full information and semi-bandit games, we have:

$$
\begin{gathered}
0.008 d \sqrt{n} \leq \bar{R}_{n, \infty} \leq d \sqrt{2 n} \\
0.05 \sqrt{d n} \leq \bar{R}_{n, 2} \leq \sqrt{2 e d n \log (e d)},
\end{gathered}
$$

and in the bandit game:

$$
\begin{gathered}
0.01 d^{3 / 2} \sqrt{n} \leq \bar{R}_{n, \infty} \leq 2 d^{5 / 2} \sqrt{2 n} \\
0.05 d \sqrt{n} \leq \bar{R}_{n, 2} \leq d^{3 / 2} \sqrt{2 n}
\end{gathered}
$$

