Minimax Policies for Combinatorial Prediction Games

Sébastien Bubeck¹

joint work with Jean-Yves Audibert^{2,3} and Gábor Lugosi⁴

¹ Centre de Recerca Matemàtica, Barcelona, Spain

- ² Imagine, Univ. Paris Est, and Sierra
- ³ CNRS/ENS/INRIA, Paris, France
- ⁴ ICREA and Pompeu Fabra University, Barcelona, Spain

Path planning

Adversary

Player

Adversary

 $\longleftrightarrow V_t \in \mathcal{S}, ext{ loss suffered: } \ell_t^\top V_t$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

 $\cdots \rightarrow V_t \in \mathcal{S}, ext{ loss suffered: } \ell_t^\top V_t$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

$$\rightsquigarrow \ell_t \in \mathbb{R}^d_+$$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

Definition (L_{∞})

We say that the adversary statisfies the L_{∞} assumption: if $\|\ell_t\|_{\infty} \leq 1$ for all t = 1, ..., n.

Definition (L_2)

We say that the adversary statisfies the L_2 assumption: if $\ell_t^T v \leq 1$ for all t = 1, ..., n and $v \in S$.

Definition (L_{∞})

We say that the adversary statisfies the L_{∞} assumption: if $\|\ell_t\|_{\infty} \leq 1$ for all t = 1, ..., n.

Definition (L_2)

We say that the adversary statisfies the L_2 assumption: if $\ell_t^T v \leq 1$ for all t = 1, ..., n and $v \in S$.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t} (VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t}(VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_{i=1}} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim P_t}(VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^\top \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t}(VV^\top)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in \mathcal{S}: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim \rho_t} (VV^T)$ in the bandit game.

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

• In the full information game, against L_2 adversaries, we have (for some η)

 $R_n \leq \sqrt{2dn},$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

 We show that, for any η, there exists a subset S ⊂ {0,1}^d and an L_∞ adversary such that

 $R_n \ge 0.02 \ d^{3/2} \sqrt{n}.$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

 In the full information game, against L₂ adversaries, we have (for some η)

$$R_n \leq \sqrt{2dn},$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

 $R_n \leq d^{3/2}\sqrt{2n}.$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

• We show that, for any η , there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} adversary such that

 $R_n \ge 0.02 \ d^{3/2} \sqrt{n}.$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

 In the full information game, against L₂ adversaries, we have (for some η)

$$R_n \leq \sqrt{2dn},$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

 We show that, for any η, there exists a subset S ⊂ {0,1}^d and an L_∞ adversary such that

 $R_n \geq 0.02 \ d^{3/2}\sqrt{n}.$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

 In the full information game, against L₂ adversaries, we have (for some η)

$$R_n \leq \sqrt{2dn},$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

• We show that, for any η , there exists a subset $S \subset \{0,1\}^d$ and an L_∞ adversary such that

$$R_n \geq 0.02 \ d^{3/2}\sqrt{n}.$$

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

The Bregman divergence $D_F : \mathcal{D} \times int(\mathcal{D})$ associated to a Legendre function F is defined by

$$D_F(u,v) = F(u) - F(v) - (u-v)^T \nabla F(v).$$

Parameter: **F** Legendre on $\mathcal{D} \supset Conv(\mathcal{S})$ (1) $w'_{t+1} \in \mathcal{D}$: $\nabla F(w_{t+1}') = \nabla F(w_t) - \tilde{\ell}_t$ \mathcal{T} w'_{t+1} Wt Conv(S

Theorem

If F admits a Hessian $\nabla^2 F$ always invertible then,

$$R_n \lessapprox diam_{D_F}(\mathcal{S}) + \mathbb{E}\sum_{t=1}^n \tilde{\ell}_t^T \left(
abla^2 F(w_t)
ight)^{-1} \tilde{\ell}_t.$$

$\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{n} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{n} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Hedge

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

$$\mathcal{D} = [0, +\infty)^d$$
, $F(x) = \sum_{i=1}^d \int_0^{x_i} \psi^{-1}(s) ds$

INF, Audibert and Bubeck [2009]

 $\left\{egin{array}{l} \psi({\sf x})=\exp(\eta{\sf x}):{\sf LinExp}\ \psi({\sf x})=(-\eta{\sf x})^{-q},q>1:{\sf LinPoly} \end{array}
ight.$

$$\mathcal{D}=[0,+\infty)^d$$
, $\mathsf{F}(\mathsf{x})=\sum_{i=1}^d\int_0^{\mathsf{x}_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

$$\mathcal{D}=[0,+\infty)^d$$
, $\mathsf{F}(\mathsf{x})=\sum_{i=1}^d\int_0^{\mathsf{x}_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

$$\mathcal{D}=[0,+\infty)^d$$
, $\mathsf{F}(\mathsf{x})=\sum_{i=1}^d\int_0^{\mathsf{x}_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

 $\begin{cases} \psi(x) = \exp(\eta x) : \text{LinExp} \\ \psi(x) = (-\eta x)^{-q}, q > 1 : \text{LinPoly} \end{cases}$

Different instances of CLEB: Follow the regularized leader

 $\mathcal{D} = Conv(\mathcal{S})$, then

$$w_{t+1} \in \operatorname*{argmin}_{w \in \mathcal{D}} \left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w + F(w) \right)$$

Particularly interesting choice: *F* self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

 $\mathcal{D} = Conv(\mathcal{S})$, then

$$w_{t+1} \in \operatorname*{argmin}_{w \in \mathcal{D}} \left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{\mathsf{T}} w + F(w) \right)$$

Particularly interesting choice: *F* self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Minimax regret for combinatorial prediction games

$$\overline{R}_{n,\infty,2} = \inf_{\text{strategy}} \max_{\mathcal{S} \subset \{0,1\}^d} \sup_{L_{\infty}, L_2 \text{ adversaries}} R_n$$

Theorem

Let $n \ge d^2$. In the full information and semi-bandit games, we have:

 $0.008 \ d\sqrt{n} \leq \overline{R}_{n,\infty} \leq d\sqrt{2n},$

$$0.05 \sqrt{dn} \leq \overline{R}_{n,2} \leq \sqrt{2edn\log(ed)},$$

and in the bandit game:

0.01 $d^{3/2}\sqrt{n} \le \overline{R}_{n,\infty} \le 2 d^{5/2}\sqrt{2n}$.

 $0.05 \ d\sqrt{n} \leq \overline{R}_{n,2} \leq d^{3/2}\sqrt{2n}.$

Minimax regret for combinatorial prediction games

$$\overline{R}_{n,\infty,2} = \inf_{\text{strategy}} \max_{S \subset \{0,1\}^d} \sup_{L_{\infty}, L_2 \text{ adversaries}} R_n$$

Theorem

Let $n \ge d^2$. In the full information and semi-bandit games, we have:

 $0.008 \ d\sqrt{n} \leq \overline{R}_{n,\infty} \leq d\sqrt{2n},$

$$0.05 \sqrt{dn} \leq \overline{R}_{n,2} \leq \sqrt{2edn\log(ed)},$$

and in the bandit game:

0.01
$$d^{3/2}\sqrt{n} \le \overline{R}_{n,\infty} \le 2 d^{5/2}\sqrt{2n}$$
.

 $0.05 \ d\sqrt{n} \leq \overline{R}_{n,2} \leq d^{3/2}\sqrt{2n}.$