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joint work with Rémi Munos1 & Gilles Stoltz2 & Csaba Szepesvari3

1 INRIA Lille, SequeL team
2 CNRS/ENS/HEC
3 University of Alberta

S. Bubeck & R. Munos & G. Stoltz & C. Szepesvari X -Armed Bandits



mon-logo

Framework
HOO

Theoretical result

X -armed bandit game

Parameters available to the forecaster: the number of rounds n
and the set of arms X .
Parameters unknown to the forecaster: mean-payoff function
f : X → [0, 1], reward distributions (over [0, 1]) M(x) such that
f (x) is the expectation of M(x).

For each round t = 1, 2, . . . , n;
1 The player chooses an arm Xt ∈ X .
2 The environment draws the reward Yt from M(Xt) (and

independently from the past given Xt).

Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret

Rn = E
n∑

t=1

(
max
x∈X

f (x)− Yt

)
.
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Motivating examples

Calibrating the temperature or levels of other inputs to a
reaction so as to maximize the yield of a chemical process.

Pricing a new product with uncertain demand in order to
maximize revenue

In general: online parameter tuning of numerical methods.

Note: in the pricing problem different product lines could also
be tested while tuning the price ⇒ hybrid continuous/discrete
set of arms.
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Summary of the talk

We present a new strategy, Hierarchical Optimistic
Optimization (HOO). It is based on a tree-representation
of the search space, that we explore non-uniformly thanks to
upper confidence bounds assigned to each nodes.

Main theoretical result: if one knows the local regularity of
the mean-payoff function around its maximum, then it is
possible to obtain a cumulative regret of order

√
n.

In particular, using n (noisy) evaluation of the function we can
find the maximum at a precision 1/

√
n, independently of

the ambient dimension! Note that in a minimax sense, one
can only find the maximum at a precision n−1/(d+2).
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Local regularity around the maximum

Let ` be dissimilarity measure, that is, a non-negative mapping
` : X 2 → R satisfying `(x , x) = 0.

Assumption (Weakly Lipschitz)

For all x ∈ X and ε ≥ 0, if x ∈ Xε = {x ∈ X , f ∗ − f (x) ≤ ε} then
for any y ∈ X , f (x)− f (y) ≤ max(ε, `(x , y)).
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HOO - Input

HOO receives as input a sequence (Ph,i )h≥0, 1≤i≤2h of subsets
of X satisfying:

1 P0,1 = X ,
2 Ph,i = Ph+1,2i−1 ∪ Ph,2i .
3 ∃ρ ∈ (0, 1) : diam(Ph,i ) ≤ ρh where

diam(Ph,i ) = supx,y∈Ph,i
`(x , y).

We view this as a tree where node (h, i) (at depth h and
position i) is associated to the domain Ph,i .
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HOO - Global strategy given B–values for each node

h,i
B

B
h+1,2i−1

B
h+1,2i

Xt

Turned−on
nodes

Followed path

Selected node

Pulled point
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HOO - Definition of B–values

Let Th,i (n) be the number of points we pulled in (h, i).

Let µ̂h,i (n) be the empirical average in the domain (h, i).

We consider the following upper confidence bound for each
node already visited :

Uh,i (n) = µ̂h,i (n) +

√
2 ln n

Th,i (n)
+diam(Ph,i ).

Our B–values are defined as:

Bh,i (n) = min
{

Uh,i (n), max
{
Bh+1,2i−1(n), Bh+1,2i (n)

}}
.

S. Bubeck & R. Munos & G. Stoltz & C. Szepesvari X -Armed Bandits



mon-logo

Framework
HOO

Theoretical result

HOO - Definition of B–values

Let Th,i (n) be the number of points we pulled in (h, i).

Let µ̂h,i (n) be the empirical average in the domain (h, i).

We consider the following upper confidence bound for each
node already visited :

Uh,i (n) = µ̂h,i (n) +

√
2 ln n

Th,i (n)
+diam(Ph,i ).

Our B–values are defined as:

Bh,i (n) = min
{

Uh,i (n), max
{
Bh+1,2i−1(n), Bh+1,2i (n)

}}
.

S. Bubeck & R. Munos & G. Stoltz & C. Szepesvari X -Armed Bandits



mon-logo

Framework
HOO

Theoretical result

HOO - Definition of B–values

Let Th,i (n) be the number of points we pulled in (h, i).

Let µ̂h,i (n) be the empirical average in the domain (h, i).

We consider the following upper confidence bound for each
node already visited :

Uh,i (n) = µ̂h,i (n) +

√
2 ln n

Th,i (n)
+diam(Ph,i ).

Our B–values are defined as:

Bh,i (n) = min
{

Uh,i (n), max
{
Bh+1,2i−1(n), Bh+1,2i (n)

}}
.

S. Bubeck & R. Munos & G. Stoltz & C. Szepesvari X -Armed Bandits



mon-logo

Framework
HOO

Theoretical result

HOO - Definition of B–values

Let Th,i (n) be the number of points we pulled in (h, i).

Let µ̂h,i (n) be the empirical average in the domain (h, i).

We consider the following upper confidence bound for each
node already visited :

Uh,i (n) = µ̂h,i (n) +

√
2 ln n

Th,i (n)
+diam(Ph,i ).

Our B–values are defined as:

Bh,i (n) = min
{

Uh,i (n), max
{
Bh+1,2i−1(n), Bh+1,2i (n)

}}
.

S. Bubeck & R. Munos & G. Stoltz & C. Szepesvari X -Armed Bandits



mon-logo

Framework
HOO

Theoretical result

HOO - Numerical Example

n = 1000 n = 10000
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Main result

Definition (Near-optimality dimension)

Let d ≥ 0 be such that Xε = {x ∈ X , f ∗ − f (x) ≤ ε} can be
packed with O(ε−d) balls of radius ε.

RD

f

ε

ε

`(x , y) = ||x − y ||2 ⇒ d =
D/2.

`(x , y) = ||x − y ||22 ⇒ d =
0.

Theorem

HOO satisfy Rn ≤ Õ(n(d+1)/(d+2)).
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Example

X = [0, 1]D , α ≥ 0 and f locally ”α-smooth” around (any of) its
maximum x∗ (in finite number):

f (x∗)− f (x) = Θ(||x − x∗||α) as x → x∗.

Theorem

Assume that we run HOO with diameters measured with
`(x , y) = ||x − y ||β.

Known smoothness: β = α. Rn ≤ Õ(
√

n), i.e., the rate is
independent of the dimension D. Previously known for
D = 1 or α ≤ 1.

Smoothness underestimated: β < α.

Rn ≤ Õ(n(d+1)/(d+2)) where d = D
(

1
β −

1
α

)
.

Smoothness overestimated: β > α. No guarantee. Note:
UCT corresponds to β = +∞.
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