Minimax Policies for Adversarial and Stochastic Bandits

Sébastien Bubeck¹

joint work with Jean-Yves Audibert^{2,3}

- ¹ INRIA Lille, SequeL team
- ² Univ. Paris Est, Imagine
- ³ CNRS/ENS/INRIA, Willow project

Parameters: the number of arms (or actions) K and the number of rounds n.

For each round $t = 1, 2, \ldots, n$

- **(**) The forecaster chooses an arm $l_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- ② Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$.

If the forecaster receives (and observes) the gain $g_{l_{t},t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l,t}.$$

Parameters: the number of arms (or actions) K and the number of rounds n.

For each round $t = 1, 2, \ldots, n$

- The forecaster chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- ② Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$.

If the forecaster receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Parameters: the number of arms (or actions) K and the number of rounds n.

For each round $t = 1, 2, \ldots, n$

- The forecaster chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$.

If the forecaster receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Parameters: the number of arms (or actions) K and the number of rounds n.

For each round $t = 1, 2, \ldots, n$

- The forecaster chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \dots, g_{K,t}) \in [0,1]^K$.
- The forecaster receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Parameters: the number of arms (or actions) K and the number of rounds n.

For each round $t = 1, 2, \ldots, n$

- The forecaster chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, ..., g_{K,t}) ∈ [0, 1]^K.$
- The forecaster receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\dots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l,t}.$$

Stochastic and adversial settings

- Adversarial setting: The adversary can freely choose the gain vector at each time step, that is the adversary is non-oblivious.
- Stochastic setting: The adversary samples the gain vector from an unknown product distribution (ν₁,...,ν_K) on [0,1]^K, that is g_{i,t} ~ ν_i.

Stochastic and adversial settings

- Adversarial setting: The adversary can freely choose the gain vector at each time step, that is the adversary is non-oblivious.
- Stochastic setting: The adversary samples the gain vector from an unknown product distribution (ν₁,...,ν_K) on [0,1]^K, that is g_{i,t} ~ ν_i.

- Lower bound: For both settings and for any strategy, $\sup R_n \ge \frac{1}{20}\sqrt{nK}$, [Auer et al. 02a].
- Adversarial setting: Exp3 satisfies R_n ≤ √2nK log K, [Auer et al. 02a].
- **Stochastic setting:** UCB satisfies $R_n \leq \sqrt{10nK \log n}$ and $R_n \leq 10 \sum_{i:\Delta_i > 0} \frac{1}{\Delta_i} \log n$ where Δ_i is the difference between the mean of the best arm and the mean of arm *i*, [Auer et al. 02b].

- Lower bound: For both settings and for any strategy, $\sup R_n \ge \frac{1}{20}\sqrt{nK}$, [Auer et al. 02a].
- Adversarial setting: Exp3 satisfies R_n ≤ √2nK log K, [Auer et al. 02a].
- Stochastic setting: UCB satisfies $R_n \leq \sqrt{10nK \log n}$ and $R_n \leq 10 \sum_{i:\Delta_i>0} \frac{1}{\Delta_i} \log n$ where Δ_i is the difference between the mean of the best arm and the mean of arm i, [Auer et al. 02b].

- Lower bound: For both settings and for any strategy, $\sup R_n \ge \frac{1}{20}\sqrt{nK}$, [Auer et al. 02a].
- Adversarial setting: Exp3 satisfies R_n ≤ √2nK log K, [Auer et al. 02a].
- Stochastic setting: UCB satisfies $R_n \leq \sqrt{10nK \log n}$ and

 $R_n \leq 10 \sum_{i:\Delta_i>0} \frac{1}{\Delta_i} \log n$ where Δ_i is the difference between the mean of the best arm and the mean of arm *i*, [Auer et al. 02b].

- Lower bound: For both settings and for any strategy, $\sup R_n \ge \frac{1}{20}\sqrt{nK}$, [Auer et al. 02a].
- Adversarial setting: Exp3 satisfies R_n ≤ √2nK log K, [Auer et al. 02a].
- **Stochastic setting:** UCB satisfies $R_n \leq \sqrt{10nK \log n}$ and $R_n \leq 10 \sum_{i:\Delta_i>0} \frac{1}{\Delta_i} \log n$ where Δ_i is the difference between the mean of the best arm and the mean of arm *i*, [Auer et al. 02b].

MOSS (Minimax Optimal Strategy in the Stochastic setting)

- $T_i(t)$ = the number of pulls of arm *i* up to time *t*.
- $\widehat{X}_{i,t}$ = the empirical mean estimate of arm *i* at time *t* (that is based on $T_i(t)$ pulls).
- Classical UCB:

$$I_t = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t-1} + \sqrt{\frac{2 \log t}{T_i(t-1)}}$$

$$I_t = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t-1} + \sqrt{\frac{\max\left(\log\left(\frac{n}{\kappa T_i(t-1)}\right), 0\right)}{T_i(t-1)}}$$

MOSS (Minimax Optimal Strategy in the Stochastic setting)

- $T_i(t)$ = the number of pulls of arm *i* up to time *t*.
- $\widehat{X}_{i,t}$ = the empirical mean estimate of arm *i* at time *t* (that is based on $T_i(t)$ pulls).
- Classical UCB:

$$I_t = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t-1} + \sqrt{\frac{2 \log t}{T_i(t-1)}}$$

$$I_t = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i, t-1} + \sqrt{\frac{\max\left(\log\left(\frac{n}{\kappa T_i(t-1)}\right), 0\right)}{T_i(t-1)}}$$

MOSS (Minimax Optimal Strategy in the Stochastic setting)

- $T_i(t)$ = the number of pulls of arm *i* up to time *t*.
- $\hat{\chi}_{i,t}$ = the empirical mean estimate of arm *i* at time *t* (that is based on $T_i(t)$ pulls).
- Classical UCB:

$$I_t = \arg \max_{i \in \{1,...,K\}} \widehat{X}_{i,t-1} + \sqrt{rac{2\log t}{T_i(t-1)}}$$

$$I_t = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t-1} + \sqrt{\frac{\max\left(\log\left(\frac{n}{\kappa T_i(t-1)}\right), 0\right)}{T_i(t-1)}}$$

MOSS (Minimax Optimal Strategy in the Stochastic setting)

- $T_i(t)$ = the number of pulls of arm *i* up to time *t*.
- $\hat{X}_{i,t}$ = the empirical mean estimate of arm *i* at time *t* (that is based on $T_i(t)$ pulls).
- Classical UCB:

$$I_t = \arg \max_{i \in \{1,...,K\}} \widehat{X}_{i,t-1} + \sqrt{rac{2\log t}{T_i(t-1)}}$$

$$I_t = \arg \max_{i \in \{1,...,K\}} \widehat{X}_{i,t-1} + \sqrt{\frac{\max\left(\log\left(\frac{n}{\kappa T_i(t-1)}\right), 0\right)}{T_i(t-1)}} .$$

Regret bound for MOSS

Theorem

In the stochastic setting MOSS satisfies $R_n \leq 49\sqrt{nK}$.

Theorem

In the stochastic setting MOSS satisfies

$$R_n \leq 23K \sum_{i:\Delta_i>0} \frac{\max\left(\log\left(\frac{n\Delta_i^2}{K}\right), 1\right)}{\Delta_i}.$$

Regret bound for MOSS

Theorem

In the stochastic setting MOSS satisfies $R_n \leq 49\sqrt{nK}$.

Theorem

In the stochastic setting MOSS satisfies

$$R_n \leq 23K \sum_{i:\Delta_i>0} \frac{\max\left(\log\left(\frac{n\Delta_i^2}{K}\right), 1\right)}{\Delta_i}$$

Parameter: function $\psi : \mathbb{R}^*_- \to \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that

 $\lim_{x \to -\infty} \psi(x) < 1/K, \qquad \text{and} \qquad \lim_{x \to 0} \psi(x) \geq 1.$

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots,$

- $I_t \sim p_t.$
- ⁽²⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{P_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

Parameter: function $\psi : \mathbb{R}^*_- \to \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that

 $\lim_{x \to -\infty} \psi(x) < 1/K, \qquad \text{and} \qquad \lim_{x \to 0} \psi(x) \geq 1.$

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots,$

 $I_t \sim p_t.$

⁽²⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{P_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

Parameter: function $\psi : \mathbb{R}^*_- \to \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that

 $\lim_{x \to -\infty} \psi(x) < 1/K, \qquad \text{and} \qquad \lim_{x \to 0} \psi(x) \geq 1.$

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots,$

- $I_t \sim p_t.$
- **2** Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

Parameter: function $\psi : \mathbb{R}^*_- \to \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that

 $\lim_{x \to -\infty} \psi(x) < 1/K, \qquad \text{and} \qquad \lim_{x \to 0} \psi(x) \geq 1.$

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots,$

- $I_t \sim p_t.$
- **2** Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

Examples

- $\psi(x) = \exp(\eta x) + \frac{\gamma}{K}$ with $\eta > 0$ and $\gamma \in [0, 1)$; this corresponds exactly to the EXP3 strategy.
- ② $\psi(x) = \left(\frac{\eta}{x}\right)^q + \frac{\gamma}{K}$ with q > 1, $\eta > 0$ and $\gamma \in [0, 1)$; this is a new forecaster which will be proved to be minimax optimal for appropriate parameters.

Examples

- $\psi(x) = \exp(\eta x) + \frac{\gamma}{K}$ with $\eta > 0$ and $\gamma \in [0, 1)$; this corresponds exactly to the EXP3 strategy.
- $\psi(x) = \left(\frac{\eta}{x}\right)^q + \frac{\gamma}{K}$ with q > 1, $\eta > 0$ and $\gamma \in [0, 1)$; this is a new forecaster which will be proved to be minimax optimal for appropriate parameters.

Regret bound for INF

Theorem

For any real q > 1, the Implicitly Normalized Forecaster with $\psi(x) = \frac{1}{K} \left(\frac{9\sqrt{qnK}}{-x}\right)^q + \frac{q^{q/(2q-2)}}{\sqrt{nK}}$ satisfies $R_n \le \frac{37}{1 - 1/q}\sqrt{qnK}$.

Regret bound for INF

Theorem

For any real q > 1, the Implicitly Normalized Forecaster with $\psi(x) = \frac{1}{K} \left(\frac{9\sqrt{qnK}}{-x}\right)^q + \frac{q^{q/(2q-2)}}{\sqrt{nK}}$ satisfies $R_n \le \frac{37}{1-1/q}\sqrt{qnK}$. In particular for q = 3 we get $R_n \le 100\sqrt{nK}$.

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_t,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t} - p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t) - \psi(\tilde{G}_{i,t+1} - C_{t+1})$$

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_t,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t}(p_{i,t+1}-p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t}-p_{i,t+1}=\psi(\tilde{G}_{i,t}-C_t)-\psi(\tilde{G}_{i,t+1}-C_{t+1})$$

as well as a careful treatment of the "shift" introduced by $\widetilde{p}_{i,t+1}$

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_t,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} \rho_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t}(p_{i,t+1}-p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$\boldsymbol{p}_{i,t} - \boldsymbol{p}_{i,t+1} = \psi(\tilde{\boldsymbol{G}}_{i,t} - \boldsymbol{C}_t) - \psi(\tilde{\boldsymbol{G}}_{i,t+1} - \boldsymbol{C}_{t+1})$$

as well as a careful treatment of the "shift" introduced by $\tilde{p}_{i,t+1}$.

Other notions of regret

In this work we considered

$$R_n = \max_{i=1,\dots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{I_t,t}.$$

However ultimately we want to control $\max_{i} \sum_{t=1}^{n} g_{i,t} - \sum_{t=1}^{n} g_{l_{t},t}$ with high probability as well as $\mathbb{E} \max_{i} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{l_{t},t}.$

In fact if the adversary is oblivious then

$$\mathbb{E}\max_{i}\sum_{t=1}^{n}g_{i,t}-\max_{i}\mathbb{E}\sum_{t=1}^{n}g_{i,t}\leq\sqrt{\frac{n\log K}{2}}.$$

(3) For non-oblivious adversary we set $\tilde{g}_{i,t} = \frac{g_{i,t}\mathbb{1}_{i=l_t}+\beta}{p_{i,t}}$. Then high probability bounds on $\max_i \sum_{t=1}^n g_{i,t} - \sum_{t=1}^n g_{l_t,t}$ follow as well as bounds on this quantity in expectation.

Other notions of regret

In this work we considered

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

However ultimately we want to control $\max_{i} \sum_{t=1}^{n} g_{i,t} - \sum_{t=1}^{n} g_{l,t}$ with high probability as well as $\mathbb{E} \max_{i} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{l,t}.$

2 In fact if the adversary is oblivious then

$$\mathbb{E}\max_{i}\sum_{t=1}^{n}g_{i,t}-\max_{i}\mathbb{E}\sum_{t=1}^{n}g_{i,t}\leq\sqrt{\frac{n\log K}{2}}.$$

(3) For non-oblivious adversary we set $\tilde{g}_{i,t} = \frac{g_{i,t}\mathbb{1}_{i=l_t}+\beta}{p_{i,t}}$. Then high probability bounds on $\max_i \sum_{t=1}^n g_{i,t} - \sum_{t=1}^n g_{l_t,t}$ follow as well as bounds on this quantity in expectation.

Other notions of regret

In this work we considered

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

However ultimately we want to control

 $\max_{i} \sum_{t=1}^{n} g_{i,t} - \sum_{t=1}^{n} g_{l,t}, \text{ with high probability as well as } \\ \mathbb{E} \max_{i} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{l,t}.$

In fact if the adversary is oblivious then

$$\mathbb{E}\max_{i}\sum_{t=1}^{n}g_{i,t}-\max_{i}\mathbb{E}\sum_{t=1}^{n}g_{i,t}\leq\sqrt{\frac{n\log K}{2}}.$$

So For non-oblivious adversary we set $\tilde{g}_{i,t} = \frac{g_{i,t}\mathbb{1}_{i=l_t}+\beta}{p_{i,t}}$. Then high probability bounds on $\max_i \sum_{t=1}^n g_{i,t} - \sum_{t=1}^n g_{l_t,t}$ follow as well as bounds on this quantity in expectation.

Extensions of INF to other games

- The INF forecaster can be generalized to work in the classical full information game and the label efficient game (with bandit or full information).
- One can also compute bounds on the regret in a "tracking the best expert" setting, that is we compare ourselves to a strategy allowed to switch S times between different arms (in this talk we considered the case S = 0).
- Ill the proofs follow the same scheme !

Extensions of INF to other games

- The INF forecaster can be generalized to work in the classical full information game and the label efficient game (with bandit or full information).
- One can also compute bounds on the regret in a "tracking the best expert" setting, that is we compare ourselves to a strategy allowed to switch S times between different arms (in this talk we considered the case S = 0).
- Ill the proofs follow the same scheme !

Extensions of INF to other games

- The INF forecaster can be generalized to work in the classical full information game and the label efficient game (with bandit or full information).
- One can also compute bounds on the regret in a "tracking the best expert" setting, that is we compare ourselves to a strategy allowed to switch S times between different arms (in this talk we considered the case S = 0).
- It is a state of the same scheme !

Summary

	$\max_{i} \mathbb{E} \sum_{t=1}^{n} (g_{i,t} - g_{I_t,t})$		$\mathbb{E} \max_{i} \sum_{t=1}^{n} (g_{i,t} - g_{I_t,t})$		
	L.B.	U.B.	L.B.	U.B.	
Full Information					
Label Efficient F.I.					
Oblivious Bandit	\sqrt{nK}	\sqrt{nK}	\sqrt{nK}	\sqrt{nK}	
Non-Oblivious Bandit	\sqrt{nK}	\sqrt{nK}			
Label Efficient Bandit					
Tracking the Best Expert					

Summary

	$\mid \max_{i} \mathbb{E} \sum_{t}^{\prime}$	$g_{t=1}^{n}\left(g_{i,t}-g_{l_{t},t}\right)$	$\mathbb{E} \max_{i} \sum_{t=1}^{n} (g_{i,t} - g_{I_t,t})$		
	L.B.	U.B.	L.B.	U.B.	
Full Information	$\sqrt{n \log K}$	$\sqrt{n\log K}$	$\sqrt{n \log K}$	$\sqrt{n \log K}$	
Label Efficient F.I.	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log K}{m}}$	
Oblivious Bandit	\sqrt{nK}	\sqrt{nK}	\sqrt{nK}	\sqrt{nK}	
Non-Oblivious Bandit	\sqrt{nK}	\sqrt{nK}	?	$\sqrt{nK \log K}$	
Label Efficient Bandit	?	$n\sqrt{\frac{\kappa}{m}}$?	$n\sqrt{\frac{K\log K}{m}}$	
Tracking the Best Expert	?	$\sqrt{nKS\log\frac{nK}{S}}$?	$\sqrt{nKS\log \frac{nK}{S}}$	