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Bandit game

Parameters: the number of arms (or actions) K and the number
of rounds n.

For each round t = 1, 2, . . . , n

1 The forecaster chooses an arm It ∈ {1, . . . ,K}, possibly with
the help of an external randomization.

2 Simultaneously the adversary chooses a gain vector
gt = (g1,t , . . . , gK ,t) ∈ [0, 1]K .

3 The forecaster receives (and observes) the gain gIt ,t .

Goal: Maximize the cumulative gains obtained. We consider the
regret:

Rn = max
i=1,...,K

E
n∑

t=1

gi ,t − E
n∑

t=1

gIt ,t .
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Stochastic and adversial settings

Adversarial setting: The adversary can freely choose the gain
vector at each time step, that is the adversary is non-oblivious.

Stochastic setting: The adversary samples the gain vector
from an unknown product distribution (ν1, . . . , νK ) on [0, 1]K ,
that is gi ,t ∼ νi .
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Known results

Lower bound: For both settings and for any strategy,
sup Rn ≥ 1

20

√
nK , [Auer et al. 02a].

Adversarial setting: Exp3 satisfies Rn ≤
√

2nK log K , [Auer
et al. 02a].

Stochastic setting: UCB satisfies Rn ≤
√

10nK log n and
Rn ≤ 10

∑
i :∆i>0

1
∆i

log n where ∆i is the difference between
the mean of the best arm and the mean of arm i , [Auer et al.
02b].
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MOSS (Minimax Optimal Strategy in the Stochastic
setting)

Ti (t) = the number of pulls of arm i up to time t.

X̂i ,t = the empirical mean estimate of arm i at time t (that is
based on Ti (t) pulls).

Classical UCB:

It = arg max
i∈{1,...,K}

X̂i ,t−1 +

√
2 log t

Ti (t − 1)
.

MOSS:

It = arg max
i∈{1,...,K}

X̂i ,t−1 +

√√√√max
(

log
(

n
KTi (t−1)

)
, 0
)

Ti (t − 1)
.
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Regret bound for MOSS

Theorem

In the stochastic setting MOSS satisfies Rn ≤ 49
√

nK .

Theorem

In the stochastic setting MOSS satisfies

Rn ≤ 23K
∑

i :∆i>0

max
(

log
(

n∆2
i

K

)
, 1
)

∆i
.
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INF (Implicitly Normalized Forecaster)

Parameter: function ψ : R∗− → R∗+ increasing, convex, twice
continuously differentiable, and such that

lim
x→−∞

ψ(x) < 1/K , and lim
x→0

ψ(x) ≥ 1.

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

1 It ∼ pt .

2 Compute g̃i ,t =
gi,t

pi,t
1It=i and G̃i ,t =

∑t
s=1 g̃i ,s .

3 Compute the new probability distribution:

pi ,t+1 = ψ(G̃i ,t − Ct)

where Ct is the unique real number such that∑K
i=1 pi ,t+1 = 1.

Jean-Yves Audibert & Sébastien Bubeck Minimax Policies for Prediction games



mon-logo

Framework
The MOSS strategy

The INF strategy

INF (Implicitly Normalized Forecaster)

Parameter: function ψ : R∗− → R∗+ increasing, convex, twice
continuously differentiable, and such that

lim
x→−∞

ψ(x) < 1/K , and lim
x→0

ψ(x) ≥ 1.

Let p1 be the uniform distribution over {1, . . . ,K}.

For each round t = 1, 2, . . . ,

1 It ∼ pt .

2 Compute g̃i ,t =
gi,t

pi,t
1It=i and G̃i ,t =

∑t
s=1 g̃i ,s .

3 Compute the new probability distribution:

pi ,t+1 = ψ(G̃i ,t − Ct)

where Ct is the unique real number such that∑K
i=1 pi ,t+1 = 1.
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Examples

1 ψ(x) = exp(ηx) + γ
K with η > 0 and γ ∈ [0, 1); this

corresponds exactly to the EXP3 strategy.

2 ψ(x) =
(η

x

)q
+ γ

K with q > 1, η > 0 and γ ∈ [0, 1); this is a
new forecaster which will be proved to be minimax optimal for
appropriate parameters.
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Regret bound for INF

Theorem

For any real q > 1, the Implicitly Normalized Forecaster with

ψ(x) = 1
K

(
9
√

qnK
−x

)q
+ qq/(2q−2)

√
nK

satisfies

Rn ≤
37

1− 1/q

√
qnK .

In particular for q = 3 we get Rn ≤ 100
√

nK .
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Proof

By an Abel transform we shift the focus from:

n∑
t=1

gIt ,t =
n∑

t=1

K∑
i=1

pi ,t(G̃i ,t − G̃i ,t−1)

to
n−1∑
t=1

K∑
i=1

G̃i ,t(pi ,t+1 − pi ,t) =
K∑

i=1

n−1∑
t=1

ψ−1(pi ,t+1)(pi ,t+1 − pi ,t).

Then a Taylor expansion gives us:

(pi ,t+1 − pi ,t)ψ−1(pi ,t+1) = −
∫ pi,t

pi,t+1

ψ−1(u)du +
(pi ,t − pi ,t+1)2

2ψ′(ψ−1(p̃i ,t+1))
.

The first resulting term: −
∑K

i=1

∫ 1/K
pi,n+1

ψ−1(u)du is easy to

control. On the other hand for the second term we need to do a
multivariate Taylor expansion on

pi ,t − pi ,t+1 = ψ(G̃i ,t − Ct)− ψ(G̃i ,t+1 − Ct+1)

as well as a careful treatment of the ”shift” introduced by p̃i ,t+1.
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Other notions of regret

1 In this work we considered

Rn = max
i=1,...,K

E
n∑

t=1

gi ,t − E
n∑

t=1

gIt ,t .

However ultimately we want to control
maxi

∑n
t=1 gi ,t −

∑n
t=1 gIt ,t with high probability as well as

E maxi
∑n

t=1 gi ,t − E
∑n

t=1 gIt ,t .
2 In fact if the adversary is oblivious then

E max
i

n∑
t=1

gi ,t −max
i

E
n∑

t=1

gi ,t ≤
√

n log K

2
.

3 For non-oblivious adversary we set g̃i ,t =
gi,t1i=It +β

pi,t
. Then

high probability bounds on maxi
∑n

t=1 gi ,t −
∑n

t=1 gIt ,t follow
as well as bounds on this quantity in expectation.
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∑n

t=1 gIt ,t follow
as well as bounds on this quantity in expectation.
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Jean-Yves Audibert & Sébastien Bubeck Minimax Policies for Prediction games



mon-logo

Framework
The MOSS strategy

The INF strategy

Extensions of INF to other games

1 The INF forecaster can be generalized to work in the classical
full information game and the label efficient game (with
bandit or full information).

2 One can also compute bounds on the regret in a ”tracking the
best expert” setting, that is we compare ourselves to a
strategy allowed to switch S times between different arms (in
this talk we considered the case S = 0).

3 All the proofs follow the same scheme !
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L.B. U.B. L.B. U.B.

Full Information

Label Efficient F.I.

Oblivious Bandit

√
nK

√
nK

√
nK

√
nK

Non-Oblivious Bandit

√
nK

√
nK

Label Efficient Bandit

Tracking the Best Expert
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