Open-Loop Optimistic Planning

Sébastien Bubeck

joint work with Rémi Munos

INRIA Lille, SequeL team

Reinforcement learning in very large spaces

Reinforcement learning in very large spaces with open-loop planning!

Summary of the talk

• Mathematical framework for open-loop planning.

- A simple planner: uniform planning.
- Minimax lower bound.
- An adaptive optimistic planner: OLOP (Open-Loop Optimistic Planning).
- Comparison with other planners.

- Mathematical framework for open-loop planning.
- A simple planner: uniform planning.
- Minimax lower bound.
- An adaptive optimistic planner: OLOP (Open-Loop Optimistic Planning).
- Comparison with other planners.

- Mathematical framework for open-loop planning.
- A simple planner: uniform planning.
- Minimax lower bound.
- An adaptive optimistic planner: OLOP (Open-Loop Optimistic Planning).
- Comparison with other planners.

- Mathematical framework for open-loop planning.
- A simple planner: uniform planning.
- Minimax lower bound.
- An adaptive optimistic planner: OLOP (Open-Loop Optimistic Planning).
- Comparison with other planners.

- Mathematical framework for open-loop planning.
- A simple planner: uniform planning.
- Minimax lower bound.
- An adaptive optimistic planner: OLOP (Open-Loop Optimistic Planning).
- Comparison with other planners.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0,1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- ② The agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- ② The agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- ② The agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- If the agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- **2** The agent chooses an action $a_t^m \in A$.
- 3 The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.
- The agent decides to either move the next moment t + 1 in the episode or to reset to its initial position and move the next episode m + 1.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- **2** The agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.

Exploration in a stochastic and discounted environment

Parameters available to the agent: discount factor $\gamma \in (0, 1)$, finite set of actions *A*, number of rounds *n*.

Parameters unknown to the agent: the reward distributions (over [0, 1]) $\nu(a)$, $a \in A^*$, with mean $\mu(a)$.

For each episode $m \ge 1$; for each moment in the episode $t \ge 1$;

- If *n* actions have already been performed then the agent outputs an action $a(n) \in A$ and the game stops.
- **2** The agent chooses an action $a_t^m \in A$.
- The environment draws $Y_t^m \sim \nu(a_{1:t}^m)$ and the agent receives the reward $\gamma^t Y_t^m$.
- The agent decides to either move the next moment t + 1 in the episode or to reset to its initial position and move the next episode m + 1.

Simple regret

• Goal: find the optimal immediate action.

• Define the value of a sequence of actions $a \in A^h$ as:

$$V(a) = \sup_{u \in A^{\infty}: u_{1:h} = a} \sum_{t \ge 1} \gamma^t \mu(u_{1:t}).$$

• Define the simple regret of a planner as

 $r_n = \max_{a \in A} V(a) - V(a(n)).$

Simple regret

- Goal: find the optimal immediate action.
- Define the value of a sequence of actions $a \in A^h$ as:

$$V(a) = \sup_{u \in A^{\infty}: u_{1:h} = a} \sum_{t \ge 1} \gamma^t \mu(u_{1:t}).$$

• Define the simple regret of a planner as

 $r_n = \max_{a \in A} V(a) - V(a(n)).$

Simple regret

- Goal: find the optimal immediate action.
- Define the value of a sequence of actions $a \in A^h$ as:

$$V(a) = \sup_{u \in A^{\infty}: u_{1:h} = a} \sum_{t \geq 1} \gamma^t \mu(u_{1:t}).$$

• Define the simple regret of a planner as

$$r_n = \max_{a \in A} V(a) - V(a(n)).$$

Uniform planning

• Let $H \in \mathbb{N}$ be the largest integer such that $HK^H \leq n$.

- For each sequence of actions a ∈ A^H, allocate one episode (of length H) to estimate the value of the sequence a. That is, receive Y^a_t ~ ν(a_{1:t}), 1 ≤ t ≤ H (drawn independently).
- Compute, for all $a \in A^h$, $h \leq H$,

$$\widehat{\mu}(a) = \frac{1}{K^{H-h}} \sum_{b \in A^H: b_{1:h}=a} Y_h^b.$$

- Compute, for all $a \in A^H$, $\widehat{V}(a) = \sum_{t=1}^H \gamma^t \widehat{\mu}(a_{1:t})$.
- Let $a(n) \in A$ be the first action of the sequence $\arg \max_{a \in A^H} \widehat{V}(a)$.

Uniform planning

- Let $H \in \mathbb{N}$ be the largest integer such that $HK^H \leq n$.
- For each sequence of actions a ∈ A^H, allocate one episode (of length H) to estimate the value of the sequence a. That is, receive Y^a_t ~ ν(a_{1:t}), 1 ≤ t ≤ H (drawn independently).

• Compute, for all $a \in A^h$, $h \leq H$,

$$\widehat{\mu}(a) = \frac{1}{K^{H-h}} \sum_{b \in A^H: b_{1:h}=a} Y_h^b.$$

- Compute, for all $a \in A^H$, $\widehat{V}(a) = \sum_{t=1}^H \gamma^t \widehat{\mu}(a_{1:t})$.
- Let $a(n) \in A$ be the first action of the sequence $\arg \max_{a \in A^H} \widehat{V}(a)$.

Uniform planning

- Let $H \in \mathbb{N}$ be the largest integer such that $HK^H \leq n$.
- For each sequence of actions a ∈ A^H, allocate one episode (of length H) to estimate the value of the sequence a. That is, receive Y^a_t ~ ν(a_{1:t}), 1 ≤ t ≤ H (drawn independently).
- Compute, for all $a \in A^h$, $h \leq H$,

$$\widehat{\mu}(a) = \frac{1}{K^{H-h}} \sum_{b \in A^H: b_{1:h}=a} Y_h^b.$$

- Compute, for all $a \in A^H$, $\widehat{V}(a) = \sum_{t=1}^H \gamma^t \widehat{\mu}(a_{1:t})$.
- Let $a(n) \in A$ be the first action of the sequence $\arg \max_{a \in A^H} \widehat{V}(a)$.

Uniform planning

- Let $H \in \mathbb{N}$ be the largest integer such that $HK^H \leq n$.
- For each sequence of actions a ∈ A^H, allocate one episode (of length H) to estimate the value of the sequence a. That is, receive Y^a_t ~ ν(a_{1:t}), 1 ≤ t ≤ H (drawn independently).
- Compute, for all $a \in A^h$, $h \le H$,

$$\widehat{\mu}(a) = \frac{1}{K^{H-h}} \sum_{b \in A^H: b_{1:h}=a} Y_h^b.$$

• Compute, for all $a \in A^H$, $\widehat{V}(a) = \sum_{t=1}^H \gamma^t \widehat{\mu}(a_{1:t})$.

• Let $a(n) \in A$ be the first action of the sequence $\arg \max_{a \in A^H} \widehat{V}(a)$.

Uniform planning

- Let $H \in \mathbb{N}$ be the largest integer such that $HK^H \leq n$.
- For each sequence of actions a ∈ A^H, allocate one episode (of length H) to estimate the value of the sequence a. That is, receive Y^a_t ~ ν(a_{1:t}), 1 ≤ t ≤ H (drawn independently).
- Compute, for all $a \in A^h$, $h \leq H$,

$$\widehat{\mu}(a) = \frac{1}{K^{H-h}} \sum_{b \in A^H: b_{1:h}=a} Y_h^b.$$

- Compute, for all $a \in A^H$, $\widehat{V}(a) = \sum_{t=1}^H \gamma^t \widehat{\mu}(a_{1:t})$.
- Let a(n) ∈ A be the first action of the sequence arg max_{a∈A^H} V(a).

Regret bound for uniform planning

Theorem

Uniform planning satisfies:

$$\mathbb{E}r_n = \begin{cases} \tilde{O}\left(n^{-\frac{\log 1/\gamma}{\log K}}\right) & \text{if } \gamma\sqrt{K} > 1, \\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{K} \le 1. \end{cases}$$

Minimax lower bound

Theorem

Any agent satisfies:

$$\sup_{\nu} \mathbb{E}r_n = \begin{cases} \Omega\left(n^{-\frac{\log 1/\gamma}{\log K}}\right) & \text{if } \gamma\sqrt{K} > 1, \\ \Omega\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{K} \le 1. \end{cases}$$

OLOP (Open-Loop Optimistic Planning)

Let $L = \lceil \log n/(2 \log 1/\gamma) \rceil$ and M be the largest integer such that $ML \leq n$.

For each episode $m = 1, 2, \ldots, M$;

The agent computes the *B*-values at time *m* - 1 for sequences of actions in *A^L* and chooses

 $a^m \in \operatorname*{argmax}_{a \in A^L} B_a(m-1).$

The environment draws the sequence of rewards $Y_t^m \sim \nu(a_{1:t}^m), t = 1, \ldots, L.$ Return an action that has been the most played: $a(n) = \operatorname{argmax}_{a \in A} T_a(M).$

OLOP (Open-Loop Optimistic Planning)

Let $L = \lceil \log n/(2 \log 1/\gamma) \rceil$ and M be the largest integer such that $ML \leq n$.

For each episode $m = 1, 2, \ldots, M$;

• The agent computes the B-values at time m - 1 for sequences of actions in A^L and chooses

 $a^m \in \operatorname*{argmax}_{a \in A^L} B_a(m-1).$

The environment draws the sequence of rewards $Y_t^m \sim \nu(a_{1:t}^m), t = 1, \ldots, L.$ Return an action that has been the most played: $a(n) = \operatorname{argmax}_{a \in A} T_a(M).$

OLOP (Open-Loop Optimistic Planning)

Let $L = \lceil \log n/(2 \log 1/\gamma) \rceil$ and M be the largest integer such that $ML \leq n$.

For each episode $m = 1, 2, \ldots, M$;

• The agent computes the B-values at time m - 1 for sequences of actions in A^L and chooses

 $a^m \in \operatorname*{argmax}_{a \in A^L} B_a(m-1).$

The environment draws the sequence of rewards $Y_t^m \sim \nu(a_{1:t}^m), t = 1, \dots, L.$ Return an action that has been the most played: $a(n) = \operatorname{argmax}_{a \in A} T_a(M).$

OLOP (Open-Loop Optimistic Planning)

Let $L = \lceil \log n/(2 \log 1/\gamma) \rceil$ and M be the largest integer such that $ML \leq n$.

For each episode $m = 1, 2, \ldots, M$;

• The agent computes the B-values at time m - 1 for sequences of actions in A^L and chooses

 $a^m \in \operatorname*{argmax}_{a \in A^L} B_a(m-1).$

The environment draws the sequence of rewards $Y_t^m \sim \nu(a_{1:t}^m), t = 1, \dots, L$. Return an action that has been the most played: $a(n) = \operatorname{argmax}_{a \in A} T_a(M)$.

OLOP (Open-Loop Optimistic Planning)

Let $L = \lceil \log n/(2 \log 1/\gamma) \rceil$ and M be the largest integer such that $ML \leq n$.

For each episode $m = 1, 2, \ldots, M$;

• The agent computes the B-values at time m - 1 for sequences of actions in A^L and chooses

 $a^m \in \operatorname*{argmax}_{a \in A^L} B_a(m-1).$

The environment draws the sequence of rewards $Y_t^m \sim \nu(a_{1:t}^m), t = 1, \dots, L.$ Return an action that has been the most played: $a(n) = \operatorname{argmax}_{a \in A} T_a(M).$

Definition of B-values

For any $1 \le h \le L$, for any $a \in A^h$, let

• $T_a(m) = \sum_{s=1}^m \mathbb{1}\{a_{1:h}^s = a\},$ • $\hat{\mu}_a(m) = \frac{1}{T_a(m)} \sum_{s=1}^m Y_h^s \mathbb{1}\{a_{1:h}^s = a\},$ • $U_a(m) = \sum_{t=1}^h \left(\gamma^t \hat{\mu}_{a_{1:t}}(m) + \gamma^t \sqrt{\frac{2\log M}{T_{a_{1:t}}(m)}}\right) + \frac{\gamma^{h+1}}{1-\gamma}.$

$$B_{a}(m) = \inf_{1 \leq h \leq L} U_{a_{1:h}}(m).$$

Definition of B-values

For any $1 \le h \le L$, for any $a \in A^h$, let

- $T_a(m) = \sum_{s=1}^m \mathbb{1}\{a_{1:h}^s = a\},\$
- $\widehat{\mu}_{a}(m) = \frac{1}{T_{a}(m)} \sum_{s=1}^{m} Y_{h}^{s} \mathbb{1}\{a_{1:h}^{s} = a\},$
- $U_a(m) = \sum_{t=1}^h \left(\gamma^t \widehat{\mu}_{a_{1:t}}(m) + \gamma^t \sqrt{\frac{2\log M}{T_{a_{1:t}}(m)}} \right) + \frac{\gamma^{h+1}}{1-\gamma}.$

$$B_{a}(m) = \inf_{1 \leq h \leq L} U_{a_{1:h}}(m).$$

Definition of B-values

For any $1 \le h \le L$, for any $a \in A^h$, let

- $T_a(m) = \sum_{s=1}^m \mathbb{1}\{a_{1:h}^s = a\},\$
- $\hat{\mu}_a(m) = \frac{1}{T_a(m)} \sum_{s=1}^m Y_h^s \mathbb{1}\{a_{1:h}^s = a\},$
- $U_{a}(m) = \sum_{t=1}^{h} \left(\gamma^{t} \widehat{\mu}_{a_{1:t}}(m) + \gamma^{t} \sqrt{\frac{2 \log M}{T_{a_{1:t}}(m)}} \right) + \frac{\gamma^{h+1}}{1-\gamma}.$

$$B_{a}(m) = \inf_{1 \leq h \leq L} U_{a_{1:h}}(m).$$

Definition of B-values

For any
$$1 \le h \le L$$
, for any $a \in A^h$, let

•
$$T_a(m) = \sum_{s=1}^m \mathbb{1}\{a_{1:h}^s = a\},\$$

•
$$\widehat{\mu}_{a}(m) = \frac{1}{T_{a}(m)} \sum_{s=1}^{m} Y_{h}^{s} \mathbb{1}\{a_{1:h}^{s} = a\},$$

•
$$U_a(m) = \sum_{t=1}^h \left(\gamma^t \widehat{\mu}_{a_{1:t}}(m) + \gamma^t \sqrt{\frac{2 \log M}{T_{a_{1:t}}(m)}} \right) + \frac{\gamma^{h+1}}{1-\gamma}.$$

$$B_a(m) = \inf_{1 \leq h \leq L} U_{a_{1:h}}(m).$$

Definition of B-values

For any
$$1 \le h \le L$$
, for any $a \in A^h$, let

•
$$T_a(m) = \sum_{s=1}^m \mathbb{1}\{a_{1:h}^s = a\},\$$

•
$$\widehat{\mu}_{a}(m) = \frac{1}{T_{a}(m)} \sum_{s=1}^{m} Y_{h}^{s} \mathbb{1}\{a_{1:h}^{s} = a\},$$

•
$$U_a(m) = \sum_{t=1}^h \left(\gamma^t \widehat{\mu}_{a_{1:t}}(m) + \gamma^t \sqrt{\frac{2 \log M}{T_{a_{1:t}}(m)}} \right) + \frac{\gamma^{h+1}}{1-\gamma}.$$

$$B_{\mathsf{a}}(m) = \inf_{1 \leq h \leq L} U_{\mathsf{a}_{1:h}}(m).$$

Regret bound for OLOP

Define $\kappa_c \in [1, K]$ as the branching factor of the set of sequences in A^h that are $c\frac{\gamma^{h+1}}{1-\gamma}$ -optimal, where c > 0, i.e.

$$\kappa_c = \limsup_{h o \infty} \left| \left\{ a \in \mathcal{A}^h : V(a) \ge V - c rac{\gamma^{h+1}}{1-\gamma}
ight\} \right|^{1/h}$$

I heorem

For any $\kappa' > \kappa_2$, OLOP satisfies:

$$\mathbb{E}r_{n} = \begin{cases} \tilde{O}\left(n^{-\frac{\log 1/\gamma}{\log \kappa'}}\right) & \text{if } \gamma\sqrt{\kappa'} > 1\\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{\kappa'} \le 1 \end{cases}$$

Regret bound for OLOP

Define $\kappa_c \in [1, K]$ as the branching factor of the set of sequences in A^h that are $c\frac{\gamma^{h+1}}{1-\gamma}$ -optimal, where c > 0, i.e.

$$\kappa_c = \limsup_{h o \infty} \left| \left\{ a \in \mathcal{A}^h : V(a) \geq V - c rac{\gamma^{h+1}}{1-\gamma}
ight\}
ight|^{1/h}$$

Theorem

For any $\kappa' > \kappa_2$, OLOP satisfies:

$$\mathbb{E}r_n = \begin{cases} \tilde{O}\left(n^{-\frac{\log 1/\gamma}{\log \kappa'}}\right) & \text{if } \gamma\sqrt{\kappa'} > 1, \\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{\kappa'} \le 1. \end{cases}$$

Comparison with Zooming Algorithm, HOO, UCB-Air (case $\gamma\sqrt{K} > 1$)

