Bandits Games and Combinatorial Problems in Statistics

Sébastien Bubeck,

Centre de Recerca Matemàtica, Barcelone

Standard prediction game

Adversary

Player

Standard prediction game

Adversary

$A \in\{1, \ldots, K\}$
Player

Standard prediction game

Adversary

Player

Standard prediction game

Standard prediction game

Adversary

loss suffered: ℓ_{A}

Player

Standard prediction game

Adversary

Standard prediction game

Adversary

Feedback:
$\ell_{1}, \ldots, \ell_{k}$
loss suffered: ℓ_{A}

$$
A \in\{1, \ldots, K\}
$$

Player

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{A_{t}, t}-\min _{a \in\{1, \ldots, K\}} \mathbb{E} \sum_{t=1}^{n} \ell_{a, t}
$$

Standard prediction game

Theorem (Hannan [1957])
There exists a strategy such that $R_{n}=O(n)$.

Standard prediction game

Theorem (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [1997])
Hedge satisfies

$$
R_{n} \leq \sqrt{\frac{n \log K}{2}}
$$

Moreover for any strategy,

Standard prediction game

Theorem (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [1997])
Hedge satisfies

$$
R_{n} \leq \sqrt{\frac{n \log K}{2}}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \sqrt{\frac{n \log K}{2}}+o(\sqrt{n \log K})
$$

Multi-armed bandit game

Adversary

Player

Multi-armed bandit game

Adversary

Player

Multi-armed bandit game

Adversary \longrightarrow ?

Player

Multi-armed bandit game

Player

Multi-armed bandit game

loss suffered: ℓ_{A}

Player

Multi-armed bandit game

Minimax regret for the multi-armed bandit game

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [1995])
Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

Moreover for any strategy,

Minimax regret for the multi-armed bandit game

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [1995])
Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \frac{1}{4} \sqrt{n K}+o(\sqrt{n K})
$$

Minimax regret for the multi-armed bandit game

$$
\begin{aligned}
& \text { Theorem (Audibert and Bubeck [2009], Audibert and Bubeck } \\
& \text { [2010], Audibert, Bubeck and Lugosi [2011]) } \\
& \text { Poly INF satisfies: }
\end{aligned}
$$

Minimax regret for the multi-armed bandit game

Robbins [1952]
$\ell_{a, 1}, \ldots, \ell_{a, n}$ iid

Cesa-Bianchi et al. [1997]

Hannan [1957]
Auer et al. [1995]

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck and Lugosi [2011])
 Poly INF satisfies:

Minimax regret for the multi-armed bandit game
Robbins [1952]
$\ell_{a, 1}, \ldots, \ell_{a, n}$ iid
Cesa-Bianchi et al. [1997]
Lai and Robbins [1985]

Hannan [1957]
Auer et al. [1995]

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck and Lugosi [2011])
 Poly INF satisfies:

Minimax regret for the multi-armed bandit game

Robbins [1952]
$\ell_{a, 1}, \ldots, \ell_{a, n}$ iid
Cesa-Bianchi et al. [1997]
Lai and Robbins [1985]

Auer et al. [2002]
Hannan [1957]
Auer et al. [1995]

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck and Lugosi [2011])
 Poly INF satisfies:

Minimax regret for the multi-armed bandit game
Audibert and Bubeck

Robbins [1952]
$\ell_{a, 1}, \ldots, \ell_{a, n}$ iid
Lai and Robbins [1985]
[2009]
Cesa-Bianchi et al. [1997]

Auer et al. [1995]

Minimax regret for the multi-armed bandit game
Audibert and Bubeck
Robbins [1952] [2009]
$\ell_{a, 1}, \ldots, \ell_{a, n}$ iid
Cesa-Bianchi et al. [1997]
Lai and Robbins [1985]

Auer et al. [2002]
Hannan [1957]
Auer et al. [1995]
Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck and Lugosi [2011])
Poly INF satisfies:

$$
R_{n} \leq 2 \sqrt{2 n K}
$$

- Start with an Abel transform on the regret
- Then multivariate Taylor expansion on the instantaneous regrets, using the implicit function theorem
- Control the main term in the expansion with Hölder's inequality
- Control the second order terms with concentration inequalities for supermartingales
- Start with an Abel transform on the regret
- Then multivariate Taylor expansion on the instantaneous regrets, using the implicit function theorem
- Control the main term in the expansion with Hölder's inequality
- Control the second order terms with concentration inequalities for supermartingales
- Start with an Abel transform on the regret
- Then multivariate Taylor expansion on the instantaneous regrets, using the implicit function theorem
- Control the main term in the expansion with Hölder's inequality
- Control the second order terms with concentration inequalities for supermartingales
- Start with an Abel transform on the regret
- Then multivariate Taylor expansion on the instantaneous regrets, using the implicit function theorem
- Control the main term in the expansion with Hölder's inequality
- Control the second order terms with concentration inequalities for supermartingales

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

- Player has to ask for the feedback
- He can ask it at most m times

Theorem (Audibert and Bubeck [2010])

Standard game: $0.03 n \sqrt{\frac{\log K}{m}} \leq \inf \sup R_{n} \leq n \sqrt{\frac{\log K}{2 m}}$

Other contributions to bandit theory

- Player has to ask for the feedback
- He can ask it at most m times
- Tools for the lower bound:

Adversarial

 banditTheorem (Audibert and Bubeck [2010])

Standard game: $0.03 n \sqrt{\frac{\log K}{m}} \leq \inf \sup R_{n} \leq n \sqrt{\frac{\log K}{2 m}}$

Other contributions to bandit theory

- Player has to ask for the feedback
- He can ask it at most m times
- Tools for the lower bound:

Adversarial

 bandit
Theorem (Audibert and Bubeck [2010])

Standard game: $0.03 n \sqrt{\frac{\log K}{m}} \leq \inf \sup R_{n} \leq n \sqrt{\frac{\log K}{2 m}}$
Bandit game: $\quad 0.04 n \sqrt{\frac{K}{m}} \leq i n f \sup R_{n} \leq 8 n \sqrt{\frac{K}{m}}$

Other contributions to bandit theory

- Player has to ask for the feedback
- He can ask it at most m times
- Tools for the lower bound:

Pinsker's inequality, Fano's lemma, chain rule for Kullback-Leibler divergence

Theorem (Audibert and Bubeck [2010])

Standard game: $0.03 n \sqrt{\frac{\log K}{m}} \leq \inf \sup R_{n} \leq n \sqrt{\frac{\log K}{2 m}}$
Bandit game: $\quad 0.04 n \sqrt{\frac{K}{m}} \leq i n f \sup R_{n} \leq 8 n \sqrt{\frac{K}{m}}$

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

Simple regret

Stochastic links between offline and online setting

 bandit
Theorem (Audibert, Bubeck and Munos [2010])

Let μ_{i} be the expected loss of action i. Assume that there is a unique optimal action i^{*}. Let $H=\sum_{i \neq i^{*}}\left(\mu_{i}-\mu_{i^{*}}\right)^{-2}$. Then

$$
\exp \left(-c^{\prime} \frac{n \log K}{H}\right) \leq \inf _{\text {Player }} \mathbb{P}\left(A_{n} \neq i^{*}\right) \leq K^{2} \exp \left(-c \frac{n}{H \log K}\right)
$$

Other contributions to bandit theory

Other contributions to bandit theory

armed

- $\{1, \ldots, K\}$ replaced by arbitrary set \mathcal{X}

Theorem (Bubeck, Munos, Stoltz and Szepesvari [2009, 2010])

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-loss function is 1-Lipschitz (with respect to some norm). Then we have

$$
\inf \sup _{\mathcal{F}} R_{n}=\tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right)
$$

Other contributions to bandit theory

Continously armed

- $\{1, \ldots, K\}$ replaced by arbitrary set \mathcal{X}

Stochastic bandit

Theorem (Bubeck, Munos, Stoltz and Szepesvari [2009, 2010])

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-loss function is 1-Lipschitz (with respect to some norm). Then we have

$$
\inf \sup _{\mathcal{F}} R_{n}=\tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right) .
$$

Other contributions to bandit theory

Continously

 armed- $\{1, \ldots, K\}$ replaced by arbitrary set \mathcal{X}

Stochastic bandit

- Tools: geometry in metric spaces, Hoeffding-Azuma's inequality for martingales

Theorem (Bubeck, Munos, Stoltz and Szepesvari $[2009,2010])$

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-loss function is 1-Lipschitz (with respect to some norm). Then we have

$$
\inf \sup _{\mathcal{F}} R_{n}=\tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right) .
$$

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

Stochastic bandit

- $\{1, \ldots, K\}$ replaced by $\{1, \ldots, K\}^{*}$
- loss of $t^{t h}$ action discounted by γ^{t}

Theorem (Bubeck and Munos [2010])

$$
\inf \sup R_{n}= \begin{cases}\tilde{\Theta}\left(n^{1-\frac{\log 1 / \gamma}{\log K}}\right) & \text { if } \gamma \sqrt{K}>1 \\ \tilde{\Theta}(\sqrt{n}) & \text { if } \gamma \sqrt{K} \leq 1\end{cases}
$$

Other contributions to bandit theory

Other contributions to bandit theory

Other contributions to bandit theory

Tools: Sequential hypothesis testing, Bernstein's inequality for martingales

Theorem (Bubeck and Slivkins [2011])

SAO satisfies in the stochastic model: $R_{n}=O\left(\log ^{2}(n)\right)$, and in the adversarial model $R_{n}=\tilde{O}(\sqrt{n})$.

Other contributions to bandit theory

Other contributions to bandit theory

Combinatorial prediction game

Adversary

Player

Combinatorial prediction game

Adversary

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Notations

$V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$.

Key idea: $V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{\top} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Notations

$V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$.

Key idea: $V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in S: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{T} \ell_{t}$, with $P_{t}=\mathbb{E}_{V / \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Notations

Key idea: $V_{t} \sim p_{t}, p_{t} \in \Delta(S)$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{+}=\ell_{+}$in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{\top} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Notations

$\longleftrightarrow \sim V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$.

Key idea: $V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in S: V_{i=1} p_{t}(V)}} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{\top} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{\top}\right)$ in the bandit game.

Key idea: $V_{t} \sim p_{t}, p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\rho}_{t}=D_{t}+V V_{t} \rho_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}(V / T)$ in the bandit game.

$\longleftrightarrow \sim V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$.

Key idea: $V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,

\square

Key idea: $V_{t} \sim p_{t}, p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,

$\leadsto \sim V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$.
Key idea: $V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})$. Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :
- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{T} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

$$
\lim _{s \rightarrow 0, s>0}(u-v)^{T} \nabla F((1-s) u+s v)=+\infty .
$$

Bregman divergence

Definition

The Bregman divergence $D_{F}: \mathcal{D} \times \operatorname{int}(\mathcal{D})$ associated to a Legendre function F is defined by

$$
D_{F}(u, v)=F(u)-F(v)-(u-v)^{T} \nabla F(v)
$$

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

$$
\mathcal{D}
$$

(2) $w_{t+1} \in \underset{w \in \operatorname{Conv}(\mathcal{S})}{\operatorname{argmin}} D_{F}\left(w, w_{t+1}^{\prime}\right)$ (3) p_{t+1}

CLEB (Combinatorial LEarning with Bregman divergences), Audibert, Bubeck and Lugosi [2011]

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
\nabla F\left(w_{t+1}^{\prime}\right)=\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}
$$

D
(2) $w_{t+1} \in \underset{w \in \operatorname{Conv}(\mathcal{S})}{\operatorname{argmin}} D_{F}\left(w, w_{t+1}^{\prime}\right)$
(3) $p_{t+1} \in \Delta(\mathcal{S}): w_{t+1}=\mathbb{E}_{V \sim p_{t+1}} V$

$$
w_{t+1}^{\prime}
$$

General regret bound for CLEB

Theorem (Audibert, Bubeck and Lugosi [2011])

If F admits a Hessian $\nabla^{2} F$ always invertible then,

$$
R_{n} \lesssim \operatorname{diam}_{D_{F}}(\mathcal{S})+\mathbb{E} \sum_{t=1}^{n} \tilde{\ell}_{t}^{T}\left(\nabla^{2} F\left(w_{t}\right)\right)^{-1} \tilde{\ell}_{t}
$$

Key tool: Pythagorean theorem for Bregman divergences

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

$\left\{\begin{array}{l}\text { Full Info: Hedge } \\ \text { Semi-Bandit=Bandit: Exp3 }\end{array}\right.$

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

$\left\{\begin{array}{l}\text { Full Info: Hedge } \\ \text { Semi-Bandit=Bandit: Exp3 }\end{array}\right.$

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Bandit: new algorithm

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

$\left\{\begin{array}{l}\text { Full Info: Hedge } \\ \text { Semi-Bandit=Bandit: Exp3 }\end{array}\right.$

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Different instances of CLEB: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

$\left\{\begin{array}{l}\text { Full Info: Hedge } \\ \text { Semi-Bandit=Bandit: Exp3 }\end{array}\right.$

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]
Bandit: new algorithm

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{c}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1
\end{array}\right.
$$

Different instances of CLEB: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{l}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1: \text { LinPoly }
\end{array}\right.
$$

Different instances of CLEB: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Strong connections with interior-point methods
Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Different instances of CLEB: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Strong connections with interior-point methods
Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Different instances of CLEB: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Strong connections with interior-point methods
Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Minimax regret for combinatorial prediction games

$$
\bar{R}_{n}=\inf _{\text {strategy }} \max _{\mathcal{S} \subset\{0,1\}^{d}} \sup _{\text {adversaries }} R_{n}
$$

Theorem (Audibert, Bubeck and Lugosi [2011])
 \square

 have:and in the bandit game:

Minimax regret for combinatorial prediction games

$$
\bar{R}_{n}=\inf _{\text {strategy }} \max _{\mathcal{S} \subset\{0,1\}^{d}} \sup _{\text {adversaries }} R_{n}
$$

Theorem (Audibert, Bubeck and Lugosi [2011])

Let $n \geq d$. In the full information and semi-bandit games, we have:

$$
0.008 d \sqrt{n} \leq \bar{R}_{n} \leq d \sqrt{2 n}
$$

and in the bandit game:

$$
0.01 d^{3 / 2} \sqrt{n} \leq \bar{R}_{n} \leq 2 d^{5 / 2} \sqrt{2 n}
$$

New project: Combinatorial testing

New project: Combinatorial testing

Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

k-sized intervals

New project: Combinatorial testing

Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

k-sets

k-sized intervals

New project: Combinatorial testing

Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

Spanning trees

New project: Combinatorial testing
Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

k-sets

Spanning trees
k-sized intervals

New project: Combinatorial testing

- Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

Paths k-sets

k-sized intervals

Spanning trees

- Data: $X \in \mathbb{R}^{d}$
- Hypotheses:
H_{0} : "nothing special happens in X"
$H_{1}: \exists C \in \mathcal{S}$ s.t "something special happens on $\left.X\right|_{C}$ "

New project: Combinatorial testing

- Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

Paths

k-sized intervals

k-sets

Spanning trees

- Data: $X \in \mathbb{R}^{d}$
- Hypotheses:
H_{0} : "nothing special happens in $X^{\prime \prime}$
$H_{1}: \exists C \in \mathcal{S}$ s.t "something special happens on $X \mid C$ "

New project: Combinatorial testing

- Set of concepts: $\mathcal{S} \subset\{0,1\}^{d}$

Paths
k-sized intervals

- Data: $X \in \mathbb{R}^{d}$
- Hypotheses:
H_{0} : "nothing special happens in $X^{\prime \prime}$
$H_{1}: \exists C \in \mathcal{S}$ s.t "something special happens on $X \mid C$ "

Two examples of combinatorial testing problems

- Simultaneous tests: $|\mathcal{S}|=1$, Fan, Hall and Yao [2008]
- Detection of elevated mean:

$$
\begin{aligned}
& H_{0}: X \sim \mathcal{N}\left(0, I_{d}\right) \\
& H_{1}: \exists C \in \mathcal{S} \text { such that } X \sim \mathcal{N}\left(\mu \mathbb{1}_{C}, I_{d}\right)
\end{aligned}
$$

For k-sets: problem suggested by Tukey, analyzed in Donoho

General framework introduced in Arias-Castro, Candès,

- Detection of combinatorial correlation, and Lugosi [2011]: $X_{i} \sim \mathcal{N}(0,1), i \in\{1, \ldots, d\}$
$H_{0}: \mathbb{E}\left(X_{i} X_{j}\right)=0$
$H_{1}: \exists C \in \mathcal{S}$ such that $\mathbb{E}\left(X_{i} X_{j}\right)=\rho \mathbb{1}_{i \neq j, i, j \in C}$

Two examples of combinatorial testing problems

- Simultaneous tests: $|\mathcal{S}|=1$, Fan, Hall and Yao [2008]
- Detection of elevated mean:

$$
\begin{aligned}
& H_{0}: X \sim \mathcal{N}\left(0, I_{d}\right) \\
& H_{1}: \exists C \in \mathcal{S} \text { such that } X \sim \mathcal{N}\left(\mu \mathbb{1}_{C}, I_{d}\right)
\end{aligned}
$$

For k-sets: problem suggested by Tukey, analyzed in Donoho and Jin [2002].
General framework introduced in Arias-Castro, Candès, Helgason and Zeitouni [2008].

- Detection of combinatorial correlation,

$H_{1}: \exists C \in \mathcal{S}$ such that $\mathbb{E}\left(X_{i} X_{j}\right)=\rho \mathbb{1}_{i \neq j, i, j \in C}$

Two examples of combinatorial testing problems

- Simultaneous tests: $|\mathcal{S}|=1$, Fan, Hall and Yao [2008]
- Detection of elevated mean:

$$
\begin{aligned}
& H_{0}: X \sim \mathcal{N}\left(0, I_{d}\right) \\
& H_{1}: \exists C \in \mathcal{S} \text { such that } X \sim \mathcal{N}\left(\mu \mathbb{1}_{C}, I_{d}\right)
\end{aligned}
$$

For k-sets: problem suggested by Tukey, analyzed in Donoho and Jin [2002].
General framework introduced in Arias-Castro, Candès, Helgason and Zeitouni [2008].

- Detection of combinatorial correlation, Arias-Castro, Bubeck and Lugosi [2011]: $X_{i} \sim \mathcal{N}(0,1), i \in\{1, \ldots, d\}$

$$
\begin{aligned}
& H_{0}: \mathbb{E}\left(X_{i} X_{j}\right)=0 \\
& H_{1}: \exists C \in \mathcal{S} \text { such that } \mathbb{E}\left(X_{i} X_{j}\right)=\rho \mathbb{1}_{i \neq j, i, j \in C}
\end{aligned}
$$

Few tests for detection of combinatorial correlation

$$
Z_{C}=X^{T}\left(A_{C}^{-1}-I_{n}\right) X, \quad\left(A_{C}\right)_{i, j}=\mathbb{1}_{i=j}+\rho \mathbb{1}_{i \neq j, i, j \in C}
$$

- Optimal test: Likelihood ratio test

$>$ threshold
- Generalized Likelihood Ratio Test (GLRT):

$$
\text { Reject if } \quad \max _{C \in \mathcal{S}}-\frac{1}{2} z_{C}>\text { threshold }
$$

- Squared norm test:

Few tests for detection of combinatorial correlation

$$
Z_{C}=X^{T}\left(A_{C}^{-1}-I_{n}\right) X, \quad\left(A_{C}\right)_{i, j}=\mathbb{1}_{i=j}+\rho \mathbb{1}_{i \neq j, i, j \in C}
$$

- Optimal test: Likelihood ratio test

$$
\text { Reject if } \quad \sum_{C \in \mathcal{S}} \exp \left(-\frac{1}{2} Z_{C}\right)>\text { threshold }
$$

- Scan statistics:
- Squared norm test:

Few tests for detection of combinatorial correlation

$$
Z_{C}=X^{T}\left(A_{C}^{-1}-I_{n}\right) X, \quad\left(A_{C}\right)_{i, j}=\mathbb{1}_{i=j}+\rho \mathbb{1}_{i \neq j, i, j \in C}
$$

- Optimal test: Likelihood ratio test

$$
\text { Reject if } \quad \sum_{C \in \mathcal{S}} \exp \left(-\frac{1}{2} z_{C}\right)>\text { threshold }
$$

- Generalized Likelihood Ratio Test (GLRT):

$$
\text { Reject if } \quad \max _{C \in \mathcal{S}}-\frac{1}{2} Z_{C}>\text { threshold }
$$

- Squared norm test:

Few tests for detection of combinatorial correlation

$$
Z_{C}=X^{T}\left(A_{C}^{-1}-I_{n}\right) X, \quad\left(A_{C}\right)_{i, j}=\mathbb{1}_{i=j}+\rho \mathbb{1}_{i \neq j, i, j \in C}
$$

- Optimal test: Likelihood ratio test

$$
\text { Reject if } \quad \sum_{C \in \mathcal{S}} \exp \left(-\frac{1}{2} z_{C}\right)>\text { threshold }
$$

- Generalized Likelihood Ratio Test (GLRT):

$$
\text { Reject if } \quad \max _{C \in \mathcal{S}}-\frac{1}{2} Z_{C}>\text { threshold }
$$

- Scan statistics:

$$
\text { Reject if } \max _{C \in \mathcal{S}} \sum_{i \neq j, i, j \in C} x_{i} X_{j}>\text { threshold }
$$

- Squared norm test:

Few tests for detection of combinatorial correlation

$$
Z_{C}=X^{\top}\left(A_{C}^{-1}-I_{n}\right) X, \quad\left(A_{C}\right)_{i, j}=\mathbb{1}_{i=j}+\rho \mathbb{1}_{i \neq j, i, j \in C}
$$

- Optimal test: Likelihood ratio test

$$
\text { Reject if } \quad \sum_{C \in \mathcal{S}} \exp \left(-\frac{1}{2} Z_{C}\right)>\text { threshold }
$$

- Generalized Likelihood Ratio Test (GLRT):

$$
\text { Reject if } \quad \max _{C \in \mathcal{S}}-\frac{1}{2} Z_{C}>\text { threshold }
$$

- Scan statistics:

$$
\text { Reject if } \max _{C \in \mathcal{S}} \sum_{i \neq j, i, j \in C} X_{i} X_{j}>\text { threshold }
$$

- Squared norm test:

$$
\text { Reject if } \quad\|X\|_{2}>\text { threshold }
$$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if $\rho \ll \frac{\log (d / k)}{k}$	Conjecture: Powerless if $k \ll \sqrt{d}$
GLRT	$\begin{aligned} & \text { Powerful if } \\ & \rho \ggg \frac{\log (d)}{k} \end{aligned}$	Conjecture: Powerless if $k \ll d$
Scan statistics	-	Conjecture: Powerless if $k \ll d$
Squared norm test	Powerful if $\rho \gg \frac{\sqrt{d}}{k}$	Powerful if $\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if	Conjecture: Powerless if
	$\rho \ll \frac{\log (d / k)}{k}$	$k \ll \sqrt{d}$
GLRT	Powerful if	Conjecture: Powerless if
	$\rho \gg \frac{\log (d)}{k}$	$k \ll d$
Scan statistics		$k \ll d$
Squared norm test	Powerful iff	
	$\rho \gg \frac{\sqrt{d}}{k}$	

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if $\rho \ll \frac{\log (d / k)}{k}$	Conjecture: Powerless if $k \ll \sqrt{d}$
GLRT	Powerful if $\rho \gg \frac{\log (d)}{k}$	Conjecture: Powerless if $k \ll d$
Scan statistics	-	Conjecture: Powerless if $k \ll d$
Squared norm test	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if $\rho \ll \frac{\log (d / k)}{k}$	Conjecture: Powerless if $k \ll \sqrt{d}$
GLRT	Powerful if $\rho \gg \frac{\log (d)}{k}$	Conjecture: Powerless if $k \ll d$
Scan statistics	-	Conjecture: Powerless if $k \ll d$
Squared norm test	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if $\rho \ll \frac{\log (d / k)}{k}$	Conjecture: Powerless if $k \ll \sqrt{d}$
GLRT	Powerful if $\rho \gg \frac{\log (d)}{k}$	Conjecture: Powerless if $k \ll d$
Scan statistics	-	Conjecture: Powerless if $k \ll d$
Squared norm test	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$	Powerful iff $\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if	Conjecture:Powerless if
	$\rho \ll \frac{\log (d / k)}{k}$	$k \ll \sqrt{d}$
GLRT	Powerful if	Conjecture: Powerless if
	$\rho \gg \frac{\log (d)}{k}$	$k \ll d$
Scan statistics	-	$k \ll d$
Squared norm test	Powerful iff	
	$\rho \gg \frac{\sqrt{d}}{k}$	$\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if	Conjecture: Powerless if
	$\rho \ll \frac{\log (d / k)}{k}$	$k \ll \sqrt{d}$
GLRT	Powerful if	
$\rho \gg \frac{\log (d)}{k}$	Conjecture: Powerless if	
		$k \ll d$
Scan statistics	-	$k \ll d$
Squared norm test	Powerful iff	
	$\rho \gg \frac{\sqrt{d}}{k}$	Powerful iff
		$\rho \gg \frac{\sqrt{d}}{k}$

Preliminary results for detection of combinatorial correlation

	k-sized intervals	k sets
Optimal test	Powerless if	Conjecture: Powerless if
$k \ll \frac{\log (d / k)}{k}$	d GLRT Powerful if $\rho \gg \frac{\log (d)}{k}$	Conjecture: Powerless if $k \ll d$
Squared norm test	Powerful iff	
	$\rho \gg \frac{\sqrt{d}}{k}$	Conjecture: Powerless if $k \ll d$
		$\rho \gg \frac{\sqrt{d}}{k}$

Perspectives

Lots of unexplored extensions, both important for applications and mathematically elegant

Perspectives

Lots of unexplored extensions, both important for applications and mathematically elegant

Perspectives

Lots of unexplored extensions, both important for applications and mathematically elegant

Bandit d-gap $\left\{\begin{array}{l}\sqrt{d} \text { related to random } \\ \text { walks on graphs } \\ \sqrt{d} \text { related to } \\ \text { interior-point methods }\end{array}\right.$

Detection of combinatorial correlation

Combinatorial LASSO?

Preprints

S. Bubeck and A. Slivkins, The best of both worlds: an adaptive strategy for stochastic and adversarial multi-armed bandits, submitted to COLT 2011
J.Y. Audibert, S. Bubeck and G. Lugosi, Minimax Policies for Combinatorial Prediction Games, submitted to COLT 2011

Journal Papers

S. Bubeck, N. Cesa-Bianchi and G. Lugosi, Bandit Theory-A Survey, to appear in Foundations and Trends in Machine Learning, 2011.
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, X-Armed Bandits, JMLR (Journal of Machine Learning Research), 2011
J.Y. Audibert and S. Bubeck, Regret Bounds and Minimax Policies under Partial Monitoring, JMLR, 2010
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in Finitely-Armed and Continuously-Armed Bandits, Theoretical Computer Science, 2011
S. Bubeck and U. von Luxburg, Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions, JMLR, 2009

Conference Papers (Acceptance ratio NIPS ~25\%, COLT ~35\%)
J.Y. Audibert, S. Bubeck and R. Munos, Best Arm Identification in Multi-Armed Bandits, COLT 2010
S. Bubeck and R. Munos, Open-Loop Optimistic Planning, COLT 2010
J.Y. Audibert and S. Bubeck, Minimax Policies for Adversarial and Stochastic Bandits, COLT 2009 (Best Student Paper Award)
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in Multi-Armed Bandit Problems, ALT 2009
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, Online Optimization in X-Armed Bandits, NIPS 2008
U. von Luxburg, S. Bubeck, S. Jegelka and M. Kaufmann, Consistent Minimization of Clustering Objective Functions, NIPS 2007

PhD Thesis, Book Chapters, Technical Reports

J.Y. Audibert, S. Bubeck and R. Munos, Bandit View on Noisy Optimization, in Optimization for Machine Learning, MIT press, 2010
S. Bubeck, Bandits Games and Clustering Foundations, PhD dissertation, 2010 (runner-up for the Gilles Kahn prize 2010)
S. Bubeck, M. Meila and U. von Luxburg, How the Initialization Affects the Stability of the k-means Algorithm, ArXiv Report, 2009

