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High level idea of the proof

Start with an Abel transform on the regret

Then multivariate Taylor expansion on the instantaneous
regrets, using the implicit function theorem

Control the main term in the expansion with Hölder’s
inequality

Control the second order terms with concentration inequalities
for supermartingales
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• Frequentist view on offline optimal
learning, [Frazier and Powell, 2010]

• Bubeck, Munos and Stoltz [2009, 2010]:
links between offline and online setting

Theorem (Audibert, Bubeck and Munos [2010])

Let µi be the expected loss of action i . Assume that there is a
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• {1, . . . ,K} replaced by arbitrary set X

• Tools: geometry in metric spaces,
Hoeffding-Azuma’s inequality for martingales

Theorem (Bubeck, Munos, Stoltz and Szepesvari [2009, 2010])

Let X be a compact subset of RD and F be the set of bandits
problems such that the mean-loss function is 1-Lipschitz (with
respect to some norm). Then we have

inf sup
F

Rn = Θ̃
(
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Key idea: Vt ∼ pt , pt ∈ ∆(S). Then, unbiased estimate ˜̀
t of

the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,tP
V∈S:Vi =1 pt(V ) Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV T
t `t , with Pt = EV∼pt (VV T ) in the bandit game.
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Legendre function

Definition

Let D be a convex subset of Rd with nonempty interior int(D)
and boundary ∂D. We call Legendre any function F : D → R
such that

F is strictly convex and admits continuous first partial
derivatives on int(D),

For any u ∈ ∂D, for any v ∈ int(D), we have

lim
s→0,s>0

(u − v)T∇F
(
(1− s)u + sv

)
= +∞.
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(1− s)u + sv

)
= +∞.



Bregman divergence

Definition

The Bregman divergence DF : D × int(D) associated to a
Legendre function F is defined by

DF (u, v) = F (u)− F (v)− (u − v)T∇F (v).
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General regret bound for CLEB

Theorem (Audibert, Bubeck and Lugosi [2011])

If F admits a Hessian ∇2F always invertible then,

Rn / diamDF
(S) + E

n∑
t=1

˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t .

Key tool: Pythagorean theorem for Bregman divergences
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Minimax regret for combinatorial prediction games

Rn = inf
strategy

max
S⊂{0,1}d

sup
adversaries

Rn

Theorem (Audibert, Bubeck and Lugosi [2011])

Let n ≥ d. In the full information and semi-bandit games, we
have:

0.008 d
√

n ≤ Rn ≤ d
√

2n,

and in the bandit game:

0.01 d3/2√n ≤ Rn ≤ 2 d5/2
√

2n.
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Two examples of combinatorial testing problems

Simultaneous tests: |S| = 1, Fan, Hall and Yao [2008]

Detection of elevated mean:

H0 : X ∼ N (0, Id)

H1 : ∃C ∈ S such that X ∼ N (µ1C , Id)

For k-sets: problem suggested by Tukey, analyzed in Donoho
and Jin [2002].
General framework introduced in Arias-Castro, Candès,
Helgason and Zeitouni [2008].

Detection of combinatorial correlation, Arias-Castro, Bubeck
and Lugosi [2011]: Xi ∼ N (0, 1), i ∈ {1, . . . , d}

H0 : E(XiXj) = 0

H1 : ∃C ∈ S such that E(XiXj) = ρ 1i 6=j ,i ,j∈C
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Few tests for detection of combinatorial correlation

ZC = X T (A−1
C − In)X , (AC )i ,j = 1i=j + ρ 1i 6=j ,i ,j∈C

Optimal test: Likelihood ratio test

Reject if
∑
C∈S

exp

(
−1

2
ZC

)
> threshold

Generalized Likelihood Ratio Test (GLRT):

Reject if max
C∈S
−1

2
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Scan statistics:
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∑
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Squared norm test:

Reject if ||X ||2 > threshold
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Preliminary results for detection of combinatorial
correlation

k-sized intervals k sets

Optimal test Powerless if Conjecture: Powerless if

ρ << log(d/k)
k k <<

√
d

GLRT Powerful if Conjecture: Powerless if

ρ >> log(d)
k k << d

Scan statistics Conjecture: Powerless if
- k << d

Squared norm test Powerful iff Powerful iff

ρ >>
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