Pure Exploration in Multi-Armed Bandits Problems

Sébastien Bubeck¹

joint work with Rémi Munos¹ & Gilles Stoltz^{2,3}

- ¹ INRIA Lille, SequeL team
- ² Ecole normale supérieure, CNRS, Paris, France
- ³ HEC Paris, CNRS, Jouy-en-Josas, France

Outline

• Mathematical description of the problem

- Concrete examples
- Analysis

Outline

- Mathematical description of the problem
- Concrete examples
- Analysis

Outline

- Mathematical description of the problem
- Concrete examples
- Analysis

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots,$

- 1 The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

• The forecaster outputs a recommendation $J_t \in \{1, ..., K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret at time n:

$$r_n = \mu^* - \mu_{J_n}.$$

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots$,

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

• The forecaster outputs a recommendation $J_t \in \{1, ..., K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret at time n:

$$r_n = \mu^* - \mu_{J_n}.$$

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots$,

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

• The forecaster outputs a recommendation $J_t \in \{1, ..., K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret at time n:

$$r_n = \mu^* - \mu_{J_n}.$$

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots$,

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).
- The forecaster outputs a recommendation $J_t \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret at time *n*:

$$r_n = \mu^* - \mu_{J_n}.$$

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots$,

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).
- The forecaster outputs a recommendation $J_t \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret at time *n*:

$$r_n = \mu^* - \mu_{J_n}.$$

Parameters: *K* probability distributions ν_1, \ldots, ν_K on [0, 1] (with respective means μ_1, \ldots, μ_K). Notation: $\mu^* = \max_{i=1,\ldots,K} \mu_i$.

For each round $t = 1, 2, \ldots$,

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).
- The forecaster outputs a recommendation $J_t \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret at time n:

$$r_n = \mu^* - \mu_{J_n}.$$

- Note that in general $R_n \neq r_1 + \ldots + r_n$ and we even expect $\mathbb{E}r_1 + \ldots + r_n << \mathbb{E}R_n$.
- ② Allocation strategy (I_t) to minimize $\mathbb{E}R_n$: tradeoff between exploration and exploitation.
- Recommendation strategy J_n to minimize Er_n: pure exploitation of the results obtained so far.
- Allocation strategy (I_t) to minimize $\mathbb{E}r_n$: pure exploration (to make the recommendation strategy more efficient!).

- Note that in general $R_n \neq r_1 + \ldots + r_n$ and we even expect $\mathbb{E}r_1 + \ldots + r_n << \mathbb{E}R_n$.
- **a** Allocation strategy (I_t) to minimize $\mathbb{E}R_n$: tradeoff between exploration and exploitation.
- Recommendation strategy J_n to minimize Er_n: pure exploitation of the results obtained so far.
- Allocation strategy (I_t) to minimize $\mathbb{E}r_n$: pure exploration (to make the recommendation strategy more efficient!).

- Note that in general $R_n \neq r_1 + \ldots + r_n$ and we even expect $\mathbb{E}r_1 + \ldots + r_n << \mathbb{E}R_n$.
- Allocation strategy (I_t) to minimize $\mathbb{E}R_n$: tradeoff between exploration and exploitation.
- Second Recommendation strategy J_n to minimize $\mathbb{E}r_n$: pure exploitation of the results obtained so far.
- Allocation strategy (I_t) to minimize $\mathbb{E}r_n$: pure exploration (to make the recommendation strategy more efficient!).

- Note that in general $R_n \neq r_1 + \ldots + r_n$ and we even expect $\mathbb{E}r_1 + \ldots + r_n << \mathbb{E}R_n$.
- Allocation strategy (I_t) to minimize $\mathbb{E}R_n$: tradeoff between exploration and exploitation.
- Second Recommendation strategy J_n to minimize $\mathbb{E}r_n$: pure exploitation of the results obtained so far.
- Allocation strategy (I_t) to minimize $\mathbb{E}r_n$: pure exploration (to make the recommendation strategy more efficient!).

Examples

• Test phase of a treatment: sequentially test different treatments for a given period of time and then select the one to be commercialized.

Goal: minimize the regret of the commercialized product (i.e the simple regret) and not the regret of the test phase (i.e. the cumulative regret)

Computer Go: Given a limited CPU time and a goban position, output the next action to play.
Idea: This problem is a bandit game where actions = arms and round = evaluation (costly in CPU time) of an action. One wants to minimize the simple regret of the selected action once the budget is exhausted.

Examples

• Test phase of a treatment: sequentially test different treatments for a given period of time and then select the one to be commercialized.

Goal: minimize the regret of the commercialized product (i.e the simple regret) and not the regret of the test phase (i.e. the cumulative regret)

Computer Go: Given a limited CPU time and a goban position, output the next action to play.
Idea: This problem is a bandit game where actions = arms and round = evaluation (costly in CPU time) of an action. One wants to minimize the simple regret of the selected action once the budget is exhausted.

Strategies

Notation: $T_i(t)$ is the number of times we pulled arm *i* up to time *t* and $\hat{\mu}_{i,s}$ is the empirical average of rewards for arm *i* after *s* pulls of this arm.

- **Uniform forecaster:** pulls each arm one after an other and recommend the arm with the highest empirical mean.
- UCB(p), [Auer et al 02]: pulls at round t the arm with the highest upper confidence bound

$$\widehat{\mu}_{i,\mathcal{T}_{i}(t-1)} + \sqrt{rac{p\log(t)}{\mathcal{T}_{i}(t-1)}}$$

and recommend the most played arm.

Strategies

Notation: $T_i(t)$ is the number of times we pulled arm *i* up to time *t* and $\hat{\mu}_{i,s}$ is the empirical average of rewards for arm *i* after *s* pulls of this arm.

- **Uniform forecaster:** pulls each arm one after an other and recommend the arm with the highest empirical mean.
- UCB(p), [Auer et al 02]: pulls at round *t* the arm with the highest upper confidence bound

$$\widehat{\mu}_{i,\mathcal{T}_{i}(t-1)} + \sqrt{rac{p\log(t)}{\mathcal{T}_{i}(t-1)}}$$

and recommend the most played arm.

Main Result: the smaller R_n the larger r_n !

Theorem (Main result)

Let $\epsilon : \{1, 2, ...\} \to \mathbb{R}$ be such that for all (Bernoulli) distributions $\nu_1, ..., \nu_K$ on the rewards, there exists a constant $C \ge 0$ with

 $\mathbb{E}R_n \leq C\epsilon(n),$

then for all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, there exists two constants D, D' > 0 and an ordering ν_1, \ldots, ν_K of the considered distributions with

 $\mathbb{E}r_n \geq D e^{-D'\epsilon(n)}$.

Consequences of the main result

Corollary

For all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, there exists two constants D, D' > 0 and an ordering ν_1, \ldots, ν_K of the considered distributions with

 $\mathbb{E}r_n \geq D e^{-D'n}$.

Remark: As we will see shortly, the basic uniform forecaster has an exponential rate of decrease for the simple regret.

Consequences of the main result

Corollary

For all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, there exists two constants D, D' > 0 and an ordering ν_1, \ldots, ν_K of the considered distributions with

 $\mathbb{E}r_n \geq D e^{-D'n}$.

Remark: As we will see shortly, the basic uniform forecaster has an exponential rate of decrease for the simple regret.

Consequences of the main result

Reminder: the optimal rate of growth for the cumulative regret is logarithmic. For instance UCB(p) satisfies for any distributions a regret bound of the form $\mathbb{E}R_n \leq C \log(n)$.

Corollary

For all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, there exists two constants D, D' > 0 and an ordering ν_1, \ldots, ν_K of the considered distributions such that the simple regret of UCB(p) satisfies

 $\mathbb{E}r_n \geq D n^{-D'}$.

Consequences of the main result

Reminder: the optimal rate of growth for the cumulative regret is logarithmic. For instance UCB(p) satisfies for any distributions a regret bound of the form $\mathbb{E}R_n \leq C \log(n)$.

Corollary

For all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, there exists two constants D, D' > 0 and an ordering ν_1, \ldots, ν_K of the considered distributions such that the simple regret of UCB(p) satisfies

 $\mathbb{E}r_n \geq D n^{-D'}$.

Conclusion at this point

- Optimal forecasters for the cumulative regret (*i.e.*, $\mathbb{E}R_n \sim \log n$) are suboptimal for the simple regret (*i.e.*, $\mathbb{E}r_n \sim n^{-D}$).
- Basic forecasters outperform famous strategies like UCB (since for the uniform strategy $\mathbb{E}r_n \sim \exp(-Dn)$).
- Is this conclusion still valid in "finite time" ? More precisely, what is the form of the distribution-dependent constants *D* ?

Conclusion at this point

- Optimal forecasters for the cumulative regret (*i.e.*, $\mathbb{E}R_n \sim \log n$) are suboptimal for the simple regret (*i.e.*, $\mathbb{E}r_n \sim n^{-D}$).
- Basic forecasters outperform famous strategies like UCB (since for the uniform strategy $\mathbb{E}r_n \sim \exp(-Dn)$).
- Is this conclusion still valid in "finite time" ? More precisely, what is the form of the distribution-dependent constants *D* ?

Conclusion at this point

- Optimal forecasters for the cumulative regret (*i.e.*, $\mathbb{E}R_n \sim \log n$) are suboptimal for the simple regret (*i.e.*, $\mathbb{E}r_n \sim n^{-D}$).
- Basic forecasters outperform famous strategies like UCB (since for the uniform strategy $\mathbb{E}r_n \sim \exp(-Dn)$).
- Is this conclusion still valid in "finite time" ? More precisely, what is the form of the distribution-dependent constants *D* ?

Precise distribution-dependent rate

Notation: $\Delta_i = \mu^* - \mu_i$.

Theorem

The uniform exploration satisfies:

$$\mathbb{E}r_n \leq \sum_{j:\Delta_j>0} \Delta_j e^{-\frac{n\Delta_j^2}{2K}}.$$

Theorem

For p > 1, UCB(p) satisfies:

$$\mathbb{E}r_n \leq \frac{K^{2p-1}}{p-1} \left(\frac{1}{n}\right)^{2(p-1)}$$

for all
$$n \ge \max\left(K + \frac{4Kp\ln n}{\Delta^2}, K(K+2)\right)$$
.

Precise distribution-dependent rate

Notation: $\Delta_i = \mu^* - \mu_i$.

Theorem

The uniform exploration satisfies:

$$\mathbb{E} r_n \leq \sum_{j:\Delta_j>0} \Delta_j e^{-\frac{n\Delta_j^2}{2K}}.$$

Theorem

For p > 1, UCB(p) satisfies:

$$\mathbb{E}r_n \leq \frac{K^{2p-1}}{p-1} \left(\frac{1}{n}\right)^{2(p-1)}$$

for all $n \ge \max\left(K + \frac{4Kp\ln n}{\Delta^2}, K(K+2)\right)$.

Precise distribution-dependent rate

Notation: $\Delta_i = \mu^* - \mu_i$.

Theorem

The uniform exploration satisfies:

$$\mathbb{E}r_n \leq \sum_{j:\Delta_j>0} \Delta_j e^{-\frac{n\Delta_j^2}{2K}}$$

Theorem

For p > 1, UCB(p) satisfies:

$$\mathbb{E}r_n \leq \frac{K^{2p-1}}{p-1} \left(\frac{1}{n}\right)^{2(p-1)}$$

for all
$$n \geq \max\left(K + \frac{4Kp\ln n}{\Delta^2}, K(K+2)\right)$$
.

Distribution-free analysis

Theorem

The uniform exploration satisfies: $\mathbb{E}r_n \leq 2\sqrt{\frac{2K\log(K)}{n}}$.

Theorem

For
$$p > 1$$
, $UCB(p)$ satisfies: $\mathbb{E}r_n \leq \sqrt{\frac{4pK\log(n) + \left(\frac{3}{2} + \frac{1}{2(p-1)}\right)}{n}}$

Theorem

For any forecaster and any time *n* there exists a set of distributions such that $\mathbb{E}r_n \geq \frac{1}{20}\sqrt{\frac{K}{n}}$.

Distribution-free analysis

Theorem

The uniform exploration satisfies: $\mathbb{E}r_n \leq 2\sqrt{\frac{2K\log(K)}{n}}$.

Theorem

For
$$p > 1$$
, $UCB(p)$ satisfies: $\mathbb{E}r_n \leq \sqrt{\frac{4pK\log(n) + \left(\frac{3}{2} + \frac{1}{2(p-1)}\right)}{n}}$

Theorem

For any forecaster and any time n there exists a set of distributions such that $\mathbb{E}r_n \geq \frac{1}{20}\sqrt{\frac{K}{n}}$.

Distribution-free analysis

Theorem

The uniform exploration satisfies: $\mathbb{E}r_n \leq 2\sqrt{\frac{2K\log(K)}{n}}$.

Theorem

For
$$p > 1$$
, $UCB(p)$ satisfies: $\mathbb{E}r_n \leq \sqrt{\frac{4pK\log(n) + \left(\frac{3}{2} + \frac{1}{2(p-1)}\right)}{n}}$

Theorem

For any forecaster and any time *n* there exists a set of distributions such that $\mathbb{E}r_n \geq \frac{1}{20}\sqrt{\frac{K}{n}}$.

Conclusion and ongoing work

• Different regimes:

- Asymptotically $\mathbb{E}r_n(\text{uniform}) << \mathbb{E}r_n(\text{strategy with low }\mathbb{E}R_n)$.
- Finite time Er_n(UCB(p)) << Er_n(uniform) (for some distributions).
- New algorithms using the insights gained from the present analysis.
- Optimal distribution-dependent rate for the simple regret.

Conclusion and ongoing work

- Different regimes:
 - Asymptotically $\mathbb{E}r_n(\text{uniform}) << \mathbb{E}r_n(\text{strategy with low }\mathbb{E}R_n)$.
 - Finite time Er_n(UCB(p)) << Er_n(uniform) (for some distributions).
- New algorithms using the insights gained from the present analysis.
- Optimal distribution-dependent rate for the simple regret.

Conclusion and ongoing work

- Different regimes:
 - Asymptotically $\mathbb{E}r_n(\text{uniform}) << \mathbb{E}r_n(\text{strategy with low }\mathbb{E}R_n)$.
 - Finite time Er_n(UCB(p)) << Er_n(uniform) (for some distributions).
- New algorithms using the insights gained from the present analysis.
- Optimal distribution-dependent rate for the simple regret.