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Pure exploration bandit game

Parameters: K probability distributions �1, . . . , �K on [0, 1] (with
respective means �1, . . . , �K ). Notation: �∗ = maxi=1,...,K �i .

For each round t = 1, 2, . . . ,

1 The forecaster chooses an arm It ∈ {1, . . . ,K}.
2 The environment draws the reward Yt from �It (and

independently from the past given It).

3 The forecaster outputs a recommendation Jt ∈ {1, . . . ,K}.
Goal: Maximize the expected reward of the recommended arm.
We consider the regret at time n:

rn = �∗ − �Jn .

Remark: The classical regret is Rn =
∑n

t=1 �
∗ − �It .
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Pure exploration bandit game

1 Note that in general Rn ∕= r1 + . . .+ rn and we even expect
Er1 + . . . rn << ERn.

2 Allocation strategy (It) to minimize ERn: tradeoff between
exploration and exploitation.

3 Recommendation strategy Jn to minimize Ern: pure
exploitation of the results obtained so far.

4 Allocation strategy (It) to minimize Ern: pure exploration (to
make the recommendation strategy more efficient!).
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Examples

Test phase of a treatment: sequentially test different
treatments for a given period of time and then select the one
to be commercialized.
Goal: minimize the regret of the commercialized product (i.e
the simple regret) and not the regret of the test phase (i.e.
the cumulative regret)

Computer Go: Given a limited CPU time and a goban
position, output the next action to play.
Idea: This problem is a bandit game where actions = arms
and round = evaluation (costly in CPU time) of an action.
One wants to minimize the simple regret of the selected
action once the budget is exhausted.
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Strategies

Notation: Ti (t) is the number of times we pulled arm i up to time
t and �̂i ,s is the empirical average of rewards for arm i after s pulls
of this arm.

Uniform forecaster: pulls each arm one after an other and
recommend the arm with the highest empirical mean.

UCB(p), [Auer et al 02]: pulls at round t the arm with the
highest upper confidence bound

�̂i ,Ti (t−1) +

√
p log(t)

Ti (t − 1)

and recommend the most played arm.
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Main Result: the smaller Rn the larger rn !

Theorem (Main result)

Let � : {1, 2, . . .} → ℝ be such that for all (Bernoulli) distributions
�1, . . . , �K on the rewards, there exists a constant C ≥ 0 with

ERn ≤ C�(n),

then for all sets of K ≥ 3 (distinct, Bernoulli) distributions on the
rewards, all different from a Dirac distribution at 1, there exists
two constants D,D ′ > 0 and an ordering �1, . . . , �K of the
considered distributions with

Ern ≥ D e−D
′�(n) .
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Consequences of the main result

Corollary

For all sets of K ≥ 3 (distinct, Bernoulli) distributions on the
rewards, all different from a Dirac distribution at 1, there exists
two constants D,D ′ > 0 and an ordering �1, . . . , �K of the
considered distributions with

Ern ≥ D e−D
′n .

Remark: As we will see shortly, the basic uniform forecaster has an
exponential rate of decrease for the simple regret.
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Consequences of the main result

Reminder: the optimal rate of growth for the cumulative regret is
logarithmic. For instance UCB(p) satisfies for any distributions a
regret bound of the form ERn ≤ C log(n).

Corollary

For all sets of K ≥ 3 (distinct, Bernoulli) distributions on the
rewards, all different from a Dirac distribution at 1, there exists two
constants D,D ′ > 0 and an ordering �1, . . . , �K of the considered
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′
.
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Conclusion at this point

Optimal forecasters for the cumulative regret (i.e.,
ERn ∼ log n) are suboptimal for the simple regret (i.e.,
Ern ∼ n−D).

Basic forecasters outperform famous strategies like UCB
(since for the uniform strategy Ern ∼ exp(−Dn)).

Is this conclusion still valid in ”finite time” ? More precisely,
what is the form of the distribution-dependent constants D ?
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Precise distribution-dependent rate

Notation: Δi = �∗ − �i .

Theorem

The uniform exploration satisfies:

Ern ≤
∑

j :Δj>0

Δj e−
nΔ2

j
2K .

Theorem

For p > 1, UCB(p) satisfies:

Ern ≤
K 2p−1

p − 1

(
1

n

)2(p−1)

for all n ≥ max
(

K + 4Kp ln n
Δ2 ,K (K + 2)

)
.
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Distribution-free analysis

Theorem

The uniform exploration satisfies: Ern ≤ 2
√

2K log(K)
n .

Theorem

For p > 1, UCB(p) satisfies: Ern ≤

√
4pK log(n)+

(
3
2

+ 1
2(p−1)

)
n .

Theorem

For any forecaster and any time n there exists a set of distributions

such that Ern ≥ 1
20

√
K
n .
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Conclusion and ongoing work

Different regimes:

Asymptotically Ern(uniform) << Ern(strategy with low ERn).
Finite time Ern(UCB(p)) << Ern(uniform) (for some
distributions).

New algorithms using the insights gained from the present
analysis.

Optimal distribution-dependent rate for the simple regret.

Sébastien Bubeck & Rémi Munos & Gilles Stoltz Pure Exploration in Bandits



mon-logo

Framework
Links with the cumulative regret

Conclusion and ongoing work

Conclusion and ongoing work

Different regimes:

Asymptotically Ern(uniform) << Ern(strategy with low ERn).
Finite time Ern(UCB(p)) << Ern(uniform) (for some
distributions).

New algorithms using the insights gained from the present
analysis.

Optimal distribution-dependent rate for the simple regret.
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