Jeux de bandits

Sébastien Bubeck,

Centre de Recerca Matemàtica, Barcelone

Standard prediction game

Parameters: number of rounds n, set of actions $\mathcal{A}=\{1, \ldots, K\}$. For each round $t=1,2, \ldots, n$;
(©) The player chooses an action $A_{t} \in \mathcal{A}$.
(2) Simultaneously a gain $g_{a, t} \in[0,1]$ is assigned to each action $a \in \mathcal{A}$.
(3) The player receives the gain $g_{A_{t}, t}$. He observes the gain $g_{a, t}$ of every action $a \in \mathcal{A}$.
Goal: Maximize the cumulative gains obtained. We consider the regret:

Standard prediction game

Parameters: number of rounds n, set of actions $\mathcal{A}=\{1, \ldots, K\}$. For each round $t=1,2, \ldots, n$;
(1) The player chooses an action $A_{t} \in \mathcal{A}$.
(2) Simultaneously a gain $g_{a, t} \in[0,1]$ is assigned to each action
(3) The player receives the gain $g_{A_{t}, t}$. He observes the gain $g_{a, t}$ of every action $a \in \mathcal{A}$.
Goal: Maximize the cumulative gains obtained. We consider the regret:

Standard prediction game

Parameters: number of rounds n, set of actions $\mathcal{A}=\{1, \ldots, K\}$. For each round $t=1,2, \ldots, n$;
(1) The player chooses an action $A_{t} \in \mathcal{A}$.
(2) Simultaneously a gain $g_{a, t} \in[0,1]$ is assigned to each action $a \in \mathcal{A}$.
(3) The player receives the gain $g_{A_{t}, t}$. He observes the gain $g_{a, t}$ of every action $a \in \mathcal{A}$.
Goal: Maximize the cumulative gains obtained. We consider the regret:

Standard prediction game

Parameters: number of rounds n, set of actions $\mathcal{A}=\{1, \ldots, K\}$. For each round $t=1,2, \ldots, n$;
(1) The player chooses an action $A_{t} \in \mathcal{A}$.
(2) Simultaneously a gain $g_{a, t} \in[0,1]$ is assigned to each action $a \in \mathcal{A}$.
(3) The player receives the gain $g_{A_{t}, t}$. He observes the gain $g_{a, t}$ of every action $a \in \mathcal{A}$.
Goal: Maximize the cumulative gains obtained. We consider the regret:

Standard prediction game

Parameters: number of rounds n, set of actions $\mathcal{A}=\{1, \ldots, K\}$. For each round $t=1,2, \ldots, n$;
(1) The player chooses an action $A_{t} \in \mathcal{A}$.
(2) Simultaneously a gain $g_{a, t} \in[0,1]$ is assigned to each action $a \in \mathcal{A}$.
(3) The player receives the gain $g_{A_{t}, t}$. He observes the gain $g_{a, t}$ of every action $a \in \mathcal{A}$.
Goal: Maximize the cumulative gains obtained. We consider the regret:

$$
R_{n}=\max _{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^{n} g_{a, t}-\mathbb{E} \sum_{t=1}^{n} g_{A_{t}, t}
$$

Standard prediction game

Example (Prediction with expert advice)

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a, t}$ is the quality of the prediction of expert a for the $t^{t h}$ element of the sequence.

Theorem (Hannan [1957])
 There exists a strategy such that $R_{n}=O(n)$

\square
Exp satisfies n

Standard prediction game

Example (Prediction with expert advice)

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a, t}$ is the quality of the prediction of expert a for the $t^{t h}$ element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_{n}=o(n)$.
Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies R_{n}

Standard prediction game

Example (Prediction with expert advice)

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a, t}$ is the quality of the prediction of expert a for the $t^{t h}$ element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_{n}=o(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_{n} \leq \sqrt{\frac{n \log K}{2}}$.
Moreover for any strategy,

Standard prediction game

Example (Prediction with expert advice)

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a, t}$ is the quality of the prediction of expert a for the $t^{t h}$ element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_{n}=O(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_{n} \leq \sqrt{\frac{n \log K}{2}}$. Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \sqrt{\frac{n \log K}{2}}+o(\sqrt{n \log K}) .
$$

Bandit information

- In the bandit game, the player only observes the gain $g_{A_{t}, t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.
- Bandit information is suited to many real-world applications.

Bandit information

- In the bandit game, the player only observes the gain $g_{A_{t}, t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.

Bandit information

- In the bandit game, the player only observes the gain $g_{A_{t}, t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.
- Bandit information is suited to many real-world applications.

Minimax regret for the bandit game

Theorem (Auer et al. [1995])
Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

Moreover for any strategy,

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck, Lugosi [2011])
 Poly INF satisfies:

Minimax regret for the bandit game

Theorem (Auer et al. [1995])

Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \frac{1}{4} \sqrt{n K}+o(\sqrt{n K})
$$

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck

 [2010], Audibert, Bubeck, Lugosi [2011])Poly INF satisfies:

Minimax regret for the bandit game

Theorem (Auer et al. [1995])

Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \frac{1}{4} \sqrt{n K}+o(\sqrt{n K})
$$

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck, Lugosi [2011])
Poly INF satisfies:

$$
R_{n} \leq 2 \sqrt{2 n K}
$$

Here we assume that for any action $a \in \mathcal{A}$, the sequence $g_{a, 1}, \ldots, g_{a, n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_{n}=O(\log n)$ (instead of $R_{n}=O(\sqrt{n})$ in the general case).

The stochastic bandit game, Robbins [1952]

Here we assume that for any action $a \in \mathcal{A}$, the sequence $g_{a, 1}, \ldots, g_{a, n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_{n}=O(\log n)$ (instead of $R_{n}=O(\sqrt{n})$ in the general case)

The stochastic bandit game, Robbins [1952]

Here we assume that for any action $a \in \mathcal{A}$, the sequence $g_{a, 1}, \ldots, g_{a, n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_{n}=O(\log n)$ (instead of $R_{n}=O(\sqrt{n})$ in the general case).

The pure exploration game, Bubeck et al. [2009, 2010, 2011]

Here we consider the stochastic bandit game with a new objective: the player seeks to maximize the gain $g_{A_{n}, n}$ of the last round. This new objective changes dramatically the optimal strategies.

Figure: Three groups of bad actions, $K=30,1 \times \operatorname{Ber}(0.5)$, $5 \times \operatorname{Ber}(0.45), 14 \times \operatorname{Ber}(0.43), 10 \times \operatorname{Ber}(0.38)$.

Conclusion

There exists many more extensions of the bandit game:

- Linear bandits: \mathcal{A} is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

Conclusion

There exists many more extensions of the bandit game:

- Linear bandits: \mathcal{A} is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

Conclusion

There exists many more extensions of the bandit game:

- Linear bandits: \mathcal{A} is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time

Conclusion

There exists many more extensions of the bandit game:

- Linear bandits: \mathcal{A} is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

Conclusion

There exists many more extensions of the bandit game:

- Linear bandits: \mathcal{A} is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

