Jeux de bandits

Sébastien Bubeck,

Centre de Recerca Matemàtica, Barcelone

- In the player chooses an action $A_t \in A$.
- ② Simultaneously a gain g_{a,t} ∈ [0, 1] is assigned to each action a ∈ A.
- Solution The player receives the gain g_{At,t}. He observes the gain g_{a,t} of every action a ∈ A.

$$R_n = \max_{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^n g_{a,t} - \mathbb{E} \sum_{t=1}^n g_{A_t,t}.$$

- The player chooses an action $A_t \in A$.
- ② Simultaneously a gain $g_{a,t} \in [0,1]$ is assigned to each action $a \in \mathcal{A}$.
- Solution 3 The player receives the gain $g_{A_t,t}$. He observes the gain $g_{a,t}$ of every action $a \in A$.

$$R_n = \max_{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^n g_{a,t} - \mathbb{E} \sum_{t=1}^n g_{A_t,t}.$$

- The player chooses an action $A_t \in A$.
- Simultaneously a gain $g_{a,t} \in [0,1]$ is assigned to each action a ∈ A.
- On The player receives the gain g_{At,t}. He observes the gain g_{a,t} of every action a ∈ A.

$$R_n = \max_{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^n g_{a,t} - \mathbb{E} \sum_{t=1}^n g_{A_t,t}.$$

- The player chooses an action $A_t \in \mathcal{A}$.
- Simultaneously a gain g_{a,t} ∈ [0, 1] is assigned to each action a ∈ A.
- Some of the player receives the gain g_{At,t}. He observes the gain g_{a,t} of every action a ∈ A.

$$R_n = \max_{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^n g_{a,t} - \mathbb{E} \sum_{t=1}^n g_{A_t,t}.$$

- The player chooses an action $A_t \in \mathcal{A}$.
- Simultaneously a gain g_{a,t} ∈ [0, 1] is assigned to each action a ∈ A.
- Some of the player receives the gain g_{At,t}. He observes the gain g_{a,t} of every action a ∈ A.

$$R_n = \max_{a \in \mathcal{A}} \mathbb{E} \sum_{t=1}^n g_{a,t} - \mathbb{E} \sum_{t=1}^n g_{A_t,t}.$$

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a,t}$ is the quality of the prediction of expert a for the t^{th} element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_n = o(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_n \leq \sqrt{\frac{n\log K}{2}}$. Moreover for any strategy,

$$\sup_{n \text{ diversaries}} R_n \ge \sqrt{\frac{n \log K}{2}} + o(\sqrt{n \log K})$$

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a,t}$ is the quality of the prediction of expert *a* for the t^{th} element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_n = o(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_n \leq \sqrt{\frac{n\log K}{2}}$. Moreover for any strategy,

$$\sup_{adversaries} R_n \ge \sqrt{\frac{n\log K}{2}} + o(\sqrt{n\log K})$$

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a,t}$ is the quality of the prediction of expert a for the t^{th} element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_n = o(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_n \leq \sqrt{\frac{n \log K}{2}}$. Moreover for any strategy,

$$\sup_{dversaries} R_n \ge \sqrt{\frac{n\log K}{2}} + o(\sqrt{n\log K})$$

Here \mathcal{A} is a set of experts trying to predict some sequence, and $g_{a,t}$ is the quality of the prediction of expert a for the t^{th} element of the sequence.

Theorem (Hannan [1957])

There exists a strategy such that $R_n = o(n)$.

Theorem (Cesa-Bianchi et al. [1997])

Exp satisfies $R_n \leq \sqrt{\frac{n \log K}{2}}$. Moreover for any strategy,

$$\sup_{adversaries} R_n \geq \sqrt{\frac{n\log K}{2}} + o(\sqrt{n\log K}).$$

- In the bandit game, the player only observes the gain $g_{A_t,t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.
- Bandit information is suited to many real-world applications.

- In the bandit game, the player only observes the gain $g_{A_t,t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.
- Bandit information is suited to many real-world applications.

- In the bandit game, the player only observes the gain $g_{A_t,t}$ of the choosen action.
- This type of feedback raises an exploration versus exploitation tradeoff.
- Bandit information is suited to many real-world applications.

Theorem (Auer et al. [1995])

Exp3 satisfies:

$$R_n \leq \sqrt{2nK\log K}.$$

Moreover for any strategy,

$$\sup_{dversaries} R_n \geq \frac{1}{4}\sqrt{nK} + o(\sqrt{nK}).$$

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck, Lugosi [2011])

Poly INF satisfies:

 $R_n \leq 2\sqrt{2nK}$.

Theorem (Auer et al. [1995])

Exp3 satisfies:

$$R_n \leq \sqrt{2nK \log K}.$$

Moreover for any strategy,

$$\sup_{dversaries} R_n \geq \frac{1}{4}\sqrt{nK} + o(\sqrt{nK}).$$

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck, Lugosi [2011])

Poly INF satisfies:

 $R_n \leq 2\sqrt{2nK}$.

Theorem (Auer et al. [1995])

Exp3 satisfies:

$$R_n \leq \sqrt{2nK \log K}.$$

Moreover for any strategy,

$$\sup_{dversaries} R_n \geq \frac{1}{4}\sqrt{nK} + o(\sqrt{nK}).$$

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck [2010], Audibert, Bubeck, Lugosi [2011])

Poly INF satisfies:

 $R_n \leq 2\sqrt{2nK}.$

Here we assume that for any action $a \in A$, the sequence $g_{a,1}, \ldots, g_{a,n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_n = O(\log n)$ (instead of $R_n = O(\sqrt{n})$ in the general case).

Here we assume that for any action $a \in A$, the sequence $g_{a,1}, \ldots, g_{a,n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_n = O(\log n)$ (instead of $R_n = O(\sqrt{n})$ in the general case).

Here we assume that for any action $a \in A$, the sequence $g_{a,1}, \ldots, g_{a,n}$ is an i.i.d sequence of random variables (and independent of each other).

- This assumption allows for powerful new strategies that exploit concentration properties of sums of independent random variables.
- For instance there exists strategies with $R_n = O(\log n)$ (instead of $R_n = O(\sqrt{n})$ in the general case).

The pure exploration game, Bubeck et al. [2009, 2010, 2011]

Here we consider the stochastic bandit game with a new objective: the player seeks to maximize the gain $g_{A_n,n}$ of the last round. This new objective changes dramatically the optimal strategies.

Figure: Three groups of bad actions, K = 30, $1 \times Ber(0.5)$, $5 \times Ber(0.45)$, $14 \times Ber(0.43)$, $10 \times Ber(0.38)$.

- Linear bandits: *A* is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: \mathcal{A} is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

- Linear bandits: *A* is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: *A* is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

- Linear bandits: *A* is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: *A* is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

- Linear bandits: *A* is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: *A* is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.

- Linear bandits: *A* is a vector space and the gain is a linear function of the action taken,
- Lipschitz bandits: *A* is a metric space and the gain is a a Lipschitz function,
- Contextual bandits: a side information is given at each round,
- Specific forms of dependency between the actions for stochastic bandits,
- Mortal bandits: set of actions varying over time.