Best Arm Identification in Multi-Armed Bandits

Sébastien Bubeck¹

joint work with Jean-Yves Audibert^{2,3} & Rémi Munos¹

- ¹ INRIA Lille, SequeL team
- ² Univ. Paris Est, Imagine
- ³ CNRS/ENS/INRIA, Willow project

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- ⁽²⁾ The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a

recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- ⁽²⁾ The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a

recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

• The forecaster chooses an arm $I_t \in \{1, \dots, K\}$.

The environment draws the reward Y_t from v_{lt} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a

recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

• The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.

The environment draws the reward Y_t from v_{lt} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a

recommendation $J_n \in \{1, \dots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a recommendation $J_n \in \{1, \ldots, K\}$. **Goal:** Find the best arm, i.e, the arm with maximal mean.

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

$$e_n = \mathbb{P}(J_n \neq i^*).$$

Parameters available to the forecaster: the number of rounds n and the number of arms K.

Parameters unknown to the forecaster: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms. We assume that there is a unique arm i^* with maximal mean.

For each round $t = 1, 2, \ldots, n$;

- The forecaster chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

At the end of the *n* rounds the forecaster outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Find the best arm, i.e, the arm with maximal mean. We denote

$$e_n = \mathbb{P}(J_n \neq i^*).$$

Motivating examples

- Clinical trials for cosmetic products. During the test phase, several several formulæ for a cream are sequentially tested, and after a finite time one is chosen for commercialization.
- Channel allocation for mobile phone communications. Cellphones can **explore the set of channels** to find the best one to operate. Each **evaluation** of a channel is **noisy** and there is a **limited number** of evaluations before the communication starts on **the chosen channel**.

Motivating examples

- Clinical trials for cosmetic products. During the test phase, several several formulæ for a cream are sequentially tested, and after a finite time one is chosen for commercialization.
- Channel allocation for mobile phone communications. Cellphones can **explore the set of channels** to find the best one to operate. Each **evaluation** of a channel is **noisy** and there is a **limited number** of evaluations before the communication starts on **the chosen channel**.

- Let μ_i be the mean of ν_i, and Δ_i = μ_{i*} − μ_i the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, **Successive Rejects (SR)** and **Adaptive UCB-E (Upper Confidence Bound Exploration)**.
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

- Let μ_i be the mean of ν_i, and Δ_i = μ_{i*} − μ_i the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, **Successive Rejects (SR)** and **Adaptive UCB-E (Upper Confidence Bound Exploration)**.
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

- Let μ_i be the mean of ν_i, and Δ_i = μ_{i*} − μ_i the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, Successive Rejects (SR) and Adaptive UCB-E (Upper Confidence Bound Exploration).
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

- Let μ_i be the mean of ν_i, and Δ_i = μ_{i*} − μ_i the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, Successive Rejects (SR) and Adaptive UCB-E (Upper Confidence Bound Exploration).
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

- Let μ_i be the mean of ν_i, and Δ_i = μ_{i*} − μ_i the suboptimality of arm i.
- Main theoretical result: it requires of order of $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to find the best arm. Note that this result is well known for K = 2.
- We present two new forecasters, Successive Rejects (SR) and Adaptive UCB-E (Upper Confidence Bound Exploration).
- SR is parameter free, and has optimal guarantees (up to a logarithmic factor).
- Adaptive UCB-E has no theoretical guarantees but it experimentally outperforms SR.

Lower Bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in [1/3, 2/3]. For any forecaster, there exists a numerical constant c > 0 such that, up to a permutation of the arms,

$$e_n \geq \exp\left(-c \frac{n \log(K)}{H}\right).$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to find the best arm.

Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds.

Theorem

There exists a numerical constant c > 0 such that the uniform strategy satisfies:

$$e_n \leq \exp\left(-c\frac{n\min_i\Delta_i^2}{K}\right).$$

Informally, the uniform strategy finds the best arm with (of order of) $K/\min_i \Delta_i^2$ rounds. For large K, this can be significantly larger than $H = \sum_{i \neq i^*} 1/\Delta_i^2$.

Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds.

Theorem

There exists a numerical constant c > 0 such that the uniform strategy satisfies:

$$e_n \leq \exp\left(-c\frac{n\min_i\Delta_i^2}{K}\right).$$

Informally, the uniform strategy finds the best arm with (of order of) $K/\min_i \Delta_i^2$ rounds. For large K, this can be significantly larger than $H = \sum_{i \neq i^*} 1/\Delta_i^2$.

Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds.

Theorem

There exists a numerical constant c > 0 such that the uniform strategy satisfies:

$$e_n \leq \exp\left(-c\frac{n\min_i\Delta_i^2}{K}\right).$$

Informally, the uniform strategy finds the best arm with (of order of) $K/\min_i \Delta_i^2$ rounds. For large K, this can be significantly larger than $H = \sum_{i \neq i^*} 1/\Delta_i^2$.

Successive Rejects (SR)

Let $\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

(1) For each $i \in A_k$, select arm *i* during $n_k - n_{k-1}$ rounds.

(2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

(1) For each $i \in A_k$, select arm i during $n_k - n_{k-1}$ rounds.

(2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

For each *i* ∈ *A_k*, select arm *i* during *n_k* − *n_{k-1}* rounds.
 Let *A_{k+1}* = *A_k* \ arg min<sub>*i*∈*A_k* X̂_{*i*,*n_k*}, where X̂_{*i*,*s*} represents the empirical mean of arm *i* after *s* pulls.
</sub>

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm *i* during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} X_{i,n_k}$, where $X_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm *i* during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm *i* during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let
$$\overline{\log(K)} = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
, $A_1 = \{1, \dots, K\}$, $n_0 = 0$ and $n_k = \lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \rceil$ for $k \in \{1, \dots, K-1\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm *i* during $n_k n_{k-1}$ rounds.
- (2) Let $A_{k+1} = A_k \setminus \arg \min_{i \in A_k} \widehat{X}_{i,n_k}$, where $\widehat{X}_{i,s}$ represents the empirical mean of arm *i* after *s* pulls.

Let J_n be the unique element of A_K .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

$$e_n \leq \exp\left(-c\frac{n}{\log(K)H}\right).$$

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, \dots, K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round
$$t = 1, 2, ..., n$$
:
Draw $I_t \in \operatorname{argmax}_{i \in I_1}$ Ki $B_{i,t-1}$

Let
$$J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$$
.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $I_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-1}$

Let $J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $l_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-}$

Let $J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $I_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-1}$.

Let $J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $I_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-1}$.

Let
$$J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$$
.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $I_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-1}$.

Let $J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

UCB-E

Parameter: exploration rate c > 0.

For $t \ge 1, i \in \{1, ..., K\}$ let $B_{i,t} = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{c n/H}{T_i(t)}}$, where $T_i(t)$ represents the number of times we selected arm i up to time t.

For each round t = 1, 2, ..., n: Draw $I_t \in \operatorname{argmax}_{i \in \{1,...,K\}} B_{i,t-1}$.

Let $J_n \in \operatorname{argmax}_{i \in \{1,...,K\}} \widehat{X}_{i,T_i(n)}$.

Theorem

For c small enough, there exists a numerical constant c' > 0 such that UCB-E satisfies $e_n \le \exp(-c'n/H)$.

UCB-E finds the best arm with (of order of) H rounds, but it requires the knowledge of H.

Adaptive UCB-E

Parameter: exploration rate c > 0.

Definitions: For $k \in \{1, ..., K-1\}$, let $n_k = \left\lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \right\rceil$, $t_0 = 0, t_1 = Kn_1$, and for k > 1, $t_k = n_1 + ..., n_{k-1} + (K-k+1)n_k$. For $i \in \{1, ..., K\}$ and a > 0, let $B_{i,t}(a) = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{a}{T_i(t)}}$ for $t \ge 1$.

Algorithm: For each phase k = 0, 1, ..., K - 1: Let $\widehat{H}_k = K$ if k = 0, and otherwise $\widehat{H}_k = \max_{K-k+1 \le i \le K} i \widehat{\Delta}_{<i>,k}^{-2}$, where $\widehat{\Delta}_{i,k} = (\max_{1 \le j \le K} \widehat{X}_{j,T_j(t_k)}) - \widehat{X}_{i,T_i(t_k)}$ and < i > is an ordering such that $\widehat{\Delta}_{<1>,k} \le ... \le \widehat{\Delta}_{<K>,k}$.

Adaptive UCB-E

Parameter: exploration rate c > 0. **Definitions:** For $k \in \{1, \dots, K-1\}$, let $n_k = \left\lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \right\rceil$, $t_0 = 0, t_1 = Kn_1$, and for k > 1. $t_k = n_1 + \dots + n_{k-1} + (K - k + 1)n_k$. For $i \in \{1, \dots, K\}$ and **Algorithm:** For each phase $k = 0, 1, \ldots, K - 1$:

Adaptive UCB-E

Parameter: exploration rate c > 0. **Definitions:** For $k \in \{1, ..., K-1\}$, let $n_k = \left\lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \right\rceil$, $t_0 = 0, t_1 = Kn_1$, and for k > 1, $t_k = n_1 + ..., n_{k-1} + (K - k + 1)n_k$. For $i \in \{1, ..., K\}$ and a > 0, let $B_{i,t}(a) = \hat{X}_{i,T_i(t)} + \sqrt{\frac{a}{T_i(t)}}$ for $t \ge 1$.

Algorithm: For each phase k = 0, 1, ..., K - 1: Let $\widehat{H}_k = K$ if k = 0, and otherwise $\widehat{H}_k = \max_{K-k+1 \le i \le K} i \widehat{\Delta}_{<i>,k}^{-2}$, where $\widehat{\Delta}_{i,k} = (\max_{1 \le j \le K} \widehat{X}_{j,T_j(t_k)}) - \widehat{X}_{i,T_i(t_k)}$ and < i > is an ordering such that $\widehat{\Delta}_{<1>,k} \le ... \le \widehat{\Delta}_{<K>,k}$.

Adaptive UCB-E

Parameter: exploration rate c > 0.

Definitions: For $k \in \{1, \ldots, K-1\}$, let $n_k = \left\lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \right\rceil$, $t_0 = 0, t_1 = Kn_1$, and for k > 1, $t_k = n_1 + \ldots + n_{k-1} + (K-k+1)n_k$. For $i \in \{1, \ldots, K\}$ and a > 0, let $B_{i,t}(a) = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{a}{T_i(t)}}$ for $t \ge 1$.

Algorithm: For each phase k = 0, 1, ..., K - 1: Let $\widehat{H}_k = K$ if k = 0, and otherwise $\widehat{H}_k = \max_{K-k+1 \le i \le K} i \widehat{\Delta}_{<i>,k}^{-2}$, where $\widehat{\Delta}_{i,k} = (\max_{1 \le j \le K} \widehat{X}_{j,T_j(t_k)}) - \widehat{X}_{i,T_i(t_k)}$ and < i > is an ordering such that $\widehat{\Delta}_{<1>,k} \le ... \le \widehat{\Delta}_{<K>,k}$.

Adaptive UCB-E

Parameter: exploration rate c > 0.

Definitions: For $k \in \{1, \ldots, K-1\}$, let $n_k = \left\lceil \frac{1}{\log(K)} \frac{n-K}{K+1-k} \right\rceil$, $t_0 = 0, t_1 = Kn_1$, and for k > 1, $t_k = n_1 + \ldots + n_{k-1} + (K-k+1)n_k$. For $i \in \{1, \ldots, K\}$ and a > 0, let $B_{i,t}(a) = \widehat{X}_{i,T_i(t)} + \sqrt{\frac{a}{T_i(t)}}$ for $t \ge 1$.

Algorithm: For each phase k = 0, 1, ..., K - 1: Let $\widehat{H}_k = K$ if k = 0, and otherwise $\widehat{H}_k = \max_{K-k+1 \le i \le K} i \widehat{\Delta}_{<i>,k}^{-2}$, where $\widehat{\Delta}_{i,k} = (\max_{1 \le j \le K} \widehat{X}_{j,T_j(t_k)}) - \widehat{X}_{i,T_i(t_k)}$ and < i > is an ordering such that $\widehat{\Delta}_{<1>,k} \le ... \le \widehat{\Delta}_{<K>,k}$.

Experiments

- Experiment 5: Arithmetic progression, K = 15, $\mu_i = 0.5 0.025i$, $i \in \{2, \dots, 15\}$.
- Experiment 7: Three groups of bad arms, K = 30, $\mu_{2:6} = 0.45$, $\mu_{7:20} = 0.43$, $\mu_{21:30} = 0.38$.

Conclusion

- It requires at least $H/\log(K)$ rounds to find the best arm.
- SR is a parameter free algorithm, it requires less than H log(K) rounds to find the best arm.
- UCB-E requires only *H* rounds but also the knowledge of *H* to tune its parameter.
- Adaptive UCB-E does not have theoretical guarantees but it experimentally outperforms SR.