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Pure exploration bandit game

Parameters available to the forecaster: the number of rounds n
and the number of arms K .
Parameters unknown to the forecaster: the reward distributions
(over [0, 1]) ν1, . . . , νK of the arms. We assume that there is a
unique arm i∗ with maximal mean.

For each round t = 1, 2, . . . , n;
1 The forecaster chooses an arm It ∈ {1, . . . ,K}.
2 The environment draws the reward Yt from νIt (and

independently from the past given It).

At the end of the n rounds the forecaster outputs a
recommendation Jn ∈ {1, . . . ,K}.
Goal: Find the best arm, i.e, the arm with maximal mean. We
denote

en = P(Jn 6= i∗).

Jean-Yves Audibert & Sébastien Bubeck & Rémi Munos Best Arm Identification in Multi-Armed Bandits



mon-logo

Framework
Lower Bound

Algorithms
Experiments

Conclusion

Pure exploration bandit game

Parameters available to the forecaster: the number of rounds n
and the number of arms K .
Parameters unknown to the forecaster: the reward distributions
(over [0, 1]) ν1, . . . , νK of the arms. We assume that there is a
unique arm i∗ with maximal mean.

For each round t = 1, 2, . . . , n;
1 The forecaster chooses an arm It ∈ {1, . . . ,K}.
2 The environment draws the reward Yt from νIt (and

independently from the past given It).

At the end of the n rounds the forecaster outputs a
recommendation Jn ∈ {1, . . . ,K}.
Goal: Find the best arm, i.e, the arm with maximal mean. We
denote

en = P(Jn 6= i∗).
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Motivating examples

Clinical trials for cosmetic products. During the test phase,
several several formulæ for a cream are sequentially tested,
and after a finite time one is chosen for commercialization.

Channel allocation for mobile phone communications.
Cellphones can explore the set of channels to find the best
one to operate. Each evaluation of a channel is noisy and
there is a limited number of evaluations before the
communication starts on the chosen channel.
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Summary of the talk

Let µi be the mean of νi , and ∆i = µi∗ − µi the
suboptimality of arm i .

Main theoretical result: it requires of order of
H =

∑
i 6=i∗ 1/∆2

i rounds to find the best arm. Note that this
result is well known for K = 2.

We present two new forecasters, Successive Rejects (SR)
and Adaptive UCB-E (Upper Confidence Bound
Exploration).

SR is parameter free, and has optimal guarantees (up to a
logarithmic factor).

Adaptive UCB-E has no theoretical guarantees but it
experimentally outperforms SR.
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Lower Bound

Theorem

Let ν1, . . . , νK be Bernoulli distributions with parameters in
[1/3, 2/3]. For any forecaster, there exists a numerical constant
c > 0 such that, up to a permutation of the arms,

en ≥ exp

(
−c

n log(K )

H

)
.

Informally, any algorithm requires at least (of order of) H/ log(K )
rounds to find the best arm.
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Uniform strategy

For each i ∈ {1, . . . ,K}, select arm i during bn/Kc rounds.

Theorem

There exists a numerical constant c > 0 such that the uniform
strategy satisfies:

en ≤ exp

(
−c

n mini ∆2
i

K

)
.

Informally, the uniform strategy finds the best arm with (of order
of) K/mini ∆2

i rounds. For large K , this can be significantly larger
than H =

∑
i 6=i∗ 1/∆2

i .
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Successive Rejects (SR)

Let log(K ) = 1
2 +

∑K
i=2

1
i , A1 = {1, . . . ,K}, n0 = 0 and

nk = d 1
log(K)

n−K
K+1−k e for k ∈ {1, . . . ,K − 1}.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak , select arm i during nk − nk−1 rounds.

(2) Let Ak+1 = Ak \ arg mini∈Ak
X̂i ,nk

, where X̂i ,s represents the
empirical mean of arm i after s pulls.

Let Jn be the unique element of AK .

Theorem

There exists a numerical constant c > 0 such that SR satisfies:

en ≤ exp

(
−c

n

log(K )H

)
.
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UCB-E

Parameter: exploration rate c > 0.

For t ≥ 1, i ∈ {1, . . . ,K} let Bi ,t = X̂i ,Ti (t) +
√

c n/H
Ti (t) , where Ti (t)

represents the number of times we selected arm i up to time t.

For each round t = 1, 2, . . . , n:
Draw It ∈ argmaxi∈{1,...,K} Bi ,t−1.

Let Jn ∈ argmaxi∈{1,...,K} X̂i ,Ti (n).

Theorem

For c small enough, there exists a numerical constant c ′ > 0 such
that UCB-E satisfies en ≤ exp (−c ′n/H).

UCB-E finds the best arm with (of order of) H rounds, but it
requires the knowledge of H.
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Jean-Yves Audibert & Sébastien Bubeck & Rémi Munos Best Arm Identification in Multi-Armed Bandits



mon-logo

Framework
Lower Bound

Algorithms
Experiments

Conclusion

UCB-E

Parameter: exploration rate c > 0.

For t ≥ 1, i ∈ {1, . . . ,K} let Bi ,t = X̂i ,Ti (t) +
√

c n/H
Ti (t) , where Ti (t)

represents the number of times we selected arm i up to time t.

For each round t = 1, 2, . . . , n:
Draw It ∈ argmaxi∈{1,...,K} Bi ,t−1.

Let Jn ∈ argmaxi∈{1,...,K} X̂i ,Ti (n).

Theorem

For c small enough, there exists a numerical constant c ′ > 0 such
that UCB-E satisfies en ≤ exp (−c ′n/H).

UCB-E finds the best arm with (of order of) H rounds, but it
requires the knowledge of H.
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Adaptive UCB-E

Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . ,K − 1}, let nk =
⌈

1
log(K)

n−K
K+1−k

⌉
,

t0 = 0, t1 = Kn1, and for k > 1,
tk = n1 + . . . nk−1 + (K − k + 1)nk . For i ∈ {1, . . . ,K} and

a > 0, let Bi ,t(a) = X̂i ,Ti (t) +
√

a
Ti (t) for t ≥ 1.

Algorithm: For each phase k = 0, 1, . . . ,K − 1:
Let Ĥk = K if k = 0, and otherwise Ĥk = maxK−k+1≤i≤K i∆̂−2

<i>,k ,

where ∆̂i ,k =
(

max1≤j≤K X̂j ,Tj (tk )

)
− X̂i ,Ti (tk ) and < i > is an

ordering such that ∆̂<1>,k ≤ . . . ≤ ∆̂<K>,k .

For t = tk + 1, . . . , tk+1: Draw
It ∈ argmaxi∈{1,...,K} Bi ,t−1(c n/Ĥk).
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Experiments

Experiment 5: Arithmetic progression, K = 15,
µi = 0.5− 0.025i , i ∈ {2, . . . , 15}.
Experiment 7: Three groups of bad arms, K = 30,
µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Experiment 5, n=4000

P
ro

ba
bi

lit
y 

of
 e

rr
or

1 : Unif
2−4 : HR
5 : SR
6−9 : UCB−E
10−14 : Ad UCB−E

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Experiment 7, n=6000

P
ro

ba
bi

lit
y 

of
 e

rr
or

1 : Unif
2−4 : HR
5 : SR
6−9 : UCB−E
10−14 : Ad UCB−E
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Conclusion

It requires at least H/ log(K ) rounds to find the best arm.

SR is a parameter free algorithm, it requires less than
H log(K ) rounds to find the best arm.

UCB-E requires only H rounds but also the knowledge of H to
tune its parameter.

Adaptive UCB-E does not have theoretical guarantees but it
experimentally outperforms SR.
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