Bandits Games

Sébastien Bubeck
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for **sequential decision making** under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**,

... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**, ... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer **Go**,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**,

... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**, ...

... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- **ads placement** on webpages,
- computer **Go**,
- **cognitive radio**,
- packets **routing**.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**,

... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- **ads placement** on webpages,
- computer **Go**,
- **cognitive radio**,
- **packets routing**.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.
Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- **Continuous** or **discrete** set of actions,
- **Adversarial** or **stochastic** environment,
- different objectives: **cumulative regret** or **simple regret**,

... and many more **extensions**, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- **ads placement** on webpages,
- computer **Go,**
- **cognitive** radio,
- **packets routing**.
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards.

Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards.

Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$:

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1, \ldots, K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$:

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds \(n \) and the number of arms \(K \).

Parameters unknown to the player: the reward distributions (over \([0, 1]\)) \(\nu_1, \ldots, \nu_K \) of the arms (with respective means \(\mu_1, \ldots, \mu_K \)). Notations: \(\mu^* = \max_{i=1,\ldots,K} \mu_i \), \(\Delta_i = \mu^* - \mu_i \), \(\Delta = \min_{i: \Delta_i > 0} \Delta_i \), \(c \) denotes an absolute numerical constant.

For each round \(t = 1, 2, \ldots, n \);

1. The player chooses an arm \(l_t \in \{1, \ldots, K\} \).
2. The environment draws the reward \(Y_t \) from \(\nu_{l_t} \) (and independently from the past given \(l_t \)).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

\[
R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.
\]
Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over $[0, 1]$) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i: \Delta_i > 0} \Delta_i$, c denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$.
2. The environment draws the reward Y_t from ν_{I_t} (and independently from the past given I_t).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E} \sum_{t=1}^{n} Y_t.$$
Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm i has been selected up to time t.
- Let $\hat{X}_{i,t}$ be the empirical mean of arm i at time t (that is based on $T_i(t)$ rewards).
- **UCB** (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$l_{t+1} = \arg\max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\alpha \log t}{T_i(t)}}.$$

- **MOSS** (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$l_{t+1} = \arg\max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\max \left(\log \left(\frac{n}{KT_i(t)} \right), 0 \right)}{T_i(t)}}.$$
Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm i has been selected up to time t.
- Let $\hat{X}_{i,t}$ be the empirical mean of arm i at time t (that is based on $T_i(t)$ rewards).

UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$I_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\alpha \log t}{T_i(t)}}.$$

MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$I_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\max \left(\frac{\log \left(\frac{n}{KT_i(t)} \right)}{T_i(t)}, 0 \right)}.$$
Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm i has been selected up to time t.
- Let $\hat{X}_{i,t}$ be the empirical mean of arm i at time t (that is based on $T_i(t)$ rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):
 \[l_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\alpha \log t}{T_i(t)}}. \]
- MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):
 \[l_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\max\left(\log \left(\frac{n}{KT_i(t)}\right), 0\right) \frac{\max\left(\log \left(\frac{n}{KT_i(t)}\right), 0\right)}{T_i(t)}}. \]
Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm i has been selected up to time t.
- Let $\hat{X}_{i,t}$ be the empirical mean of arm i at time t (that is based on $T_i(t)$ rewards).
- **UCB** (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

 $$l_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\alpha \log t}{T_i(t)}}.$$

- **MOSS** (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

 $$l_{t+1} = \arg \max_{i \in \{1, \ldots, K\}} \hat{X}_{i,t} + \sqrt{\frac{\max \left(\log \left(\frac{n}{KT_i(t)} \right), 0 \right)}{T_i(t)}}.$$
Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))

There exists $f : (1/2, +\infty) \rightarrow \mathbb{R}$ such that UCB with $\alpha > 1/2$

satisfies for any $n \geq K \geq 2$:

$$R_n \leq \sum_{i : \Delta_i > 0} \frac{4\alpha}{\Delta_i} \log(n) + Kf(\alpha), \text{ and } R_n \leq \sqrt{nK(4\alpha \log(n) + f(\alpha))}.$$

Theorem

MOSS satisfies:

$$R_n \leq \frac{cK}{\Delta} \log(n), \text{ and } R_n \leq c\sqrt{nK}.$$
Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))

There exists $f : (1/2, +\infty) \to \mathbb{R}$ such that UCB with $\alpha > 1/2$ satisfies for any $n \geq K \geq 2$:

$$R_n \leq \sum_{i: \Delta_i > 0} \frac{4\alpha}{\Delta_i} \log(n) + Kf(\alpha), \text{ and } R_n \leq \sqrt{nK(4\alpha \log(n) + f(\alpha))}.$$

Theorem

MOSS satisfies:

$$R_n \leq \frac{cK}{\Delta} \log(n), \text{ and } R_n \leq c\sqrt{nK}.$$
Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}[\mu_{J_n}]$.

Theorem

$$\inf_{\text{player's strategy}} \sup_{\nu} r_n = \Theta \left(\sqrt{\frac{K}{n}} \right).$$

Here we focus on the speed of convergence (to 0) of r_n as a function of ν.
Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm.

We consider the regret $r_n = \mu^* - \mathbb{E} \mu_{J_n}$.

Theorem

$$\inf_{\text{player's strategy}} \sup_{\nu} r_n = \Theta \left(\sqrt{\frac{K}{n}} \right).$$

Here we focus on the speed of convergence (to 0) of r_n as a function of ν.
Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}\mu_{J_n}$.

Theorem

$$\inf_{\text{player's strategy}} \sup_{\nu} r_n = \Theta \left(\sqrt{\frac{K}{n}} \right).$$

Here we focus on the speed of convergence (to 0) of r_n as a function of ν.
Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$.

Goal: Maximize the expected reward of the recommended arm.

We consider the regret $r_n = \mu^* - \mathbb{E}[\mu_{J_n}]$.

Theorem

$$\inf_{\text{player's strategy}} \sup_{\nu} r_n = \Theta \left(\sqrt{\frac{K}{n}} \right).$$

Here we focus on the **speed of convergence** (to 0) of r_n as a function of ν.

- **Multi-Armed Bandits**
- **Pure Exploration in Multi-Armed Bandits**
- **Continuously-Armed Bandits**
- **Adversarial Multi-Armed Bandits**
- **References**
Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp \left(-c \frac{n\Delta^2}{K} \right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better?

Assume that there exists a unique optimal arm i^*, then we have strategies that require only

$$H = \sum_{i \neq i^*} 1/\Delta_i^2$$

rounds to have a small regret.
Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp \left(-c \frac{n\Delta^2}{K} \right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better?

Assume that there exists a unique optimal arm i^*, then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.
Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp \left(-c \frac{n\Delta^2}{K} \right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better?

Assume that there exists a unique optimal arm i^*, then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.
Uniform strategy

For each $i \in \{1, \ldots, K\}$, select arm i during $\left\lfloor \frac{n}{K} \right\rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp \left(-c \frac{n\Delta^2}{K} \right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better?

Assume that there exists a unique optimal arm i^*, then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.
The smaller R_n the larger r_n!

Theorem

Consider any strategy and let $\epsilon : \mathbb{N} \rightarrow \mathbb{R}$ be such that for all (Bernoulli) distributions ν_1, \ldots, ν_K on the rewards, we have

$$R_n \leq c\epsilon(n),$$

then for all sets of $K \geq 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, up to a permutation of the arms we have,

$$r_n \geq \Delta \exp(-c\epsilon(n)).$$
Successive Rejects (SR)

Let $A_1 = \{1, \ldots, K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

1. For each $i \in A_k$, select arm i during n_k rounds.
2. Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K.

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp \left(-c \frac{n}{\log(K)H} \right).$$
Successive Rejects (SR)

Let \(A_1 = \{1, \ldots, K\} \).

For each phase \(k = 1, 2, \ldots, K - 1 \):

1. For each \(i \in A_k \), select arm \(i \) during \(n_k \) rounds.
2. Let \(A_{k+1} = A_k \setminus \{j\} \), where \(j \) is the arm in \(A_k \) with the smallest empirical mean.

Let \(J_n \) be the unique element of \(A_K \).

Theorem

*SR satisfies (for well chosen \((n_k)\)):

\[
r_n \leq K^2 \exp \left(-c \frac{n}{\log(K)H} \right).
\]
Successive Rejects (SR)

Let $A_1 = \{1, \ldots, K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

1. For each $i \in A_k$, select arm i during n_k rounds.
2. Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K.

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp \left(-c \frac{n}{\log(K)H} \right).$$
Successive Rejects (SR)

Let \(A_1 = \{1, \ldots, K\} \).

For each phase \(k = 1, 2, \ldots, K - 1 \):

1. For each \(i \in A_k \), select arm \(i \) during \(n_k \) rounds.
2. Let \(A_{k+1} = A_k \setminus \{j\} \), where \(j \) is the arm in \(A_k \) with the smallest empirical mean.

Let \(J_n \) be the unique element of \(A_K \).

Theorem

*SR satisfies (for well chosen \((n_k)\)):

\[
 r_n \leq K^2 \exp \left(-c \frac{n}{\log(K)H} \right).
\]
Successive Rejects (SR)

Let \(A_1 = \{1, \ldots, K\} \).

For each phase \(k = 1, 2, \ldots, K - 1 \):

1. For each \(i \in A_k \), select arm \(i \) during \(n_k \) rounds.
2. Let \(A_{k+1} = A_k \setminus \{j\} \), where \(j \) is the arm in \(A_k \) with the smallest empirical mean.

Let \(J_n \) be the unique element of \(A_K \).

Theorem

\(SR \) satisfies (for well chosen \((n_k) \)):

\[
r_n \leq K^2 \exp \left(-c \frac{n}{\log(K) H} \right).
\]
Successive Rejects (SR)

Let $A_1 = \{1, \ldots, K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

1. For each $i \in A_k$, select arm i during n_k rounds.
2. Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K.

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$
Successive Rejects (SR)

Let $A_1 = \{1, \ldots, K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

1. For each $i \in A_k$, select arm i during n_k rounds.
2. Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K.

Theorem

SR satisfies (for well chosen (n_k)):

\[
r_n \leq K^2 \exp \left(-c \frac{n}{\log(K)H} \right).
\]
Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in $[1/3, 2/3]$ (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$r_n \geq \Delta \exp \left(-c \frac{n \log(K)}{H} \right).$$

Informally, any algorithm requires at least (of order of) $H / \log(K)$ rounds to have a small regret (and recall that SR has a small regret with $\log(K)H$ rounds).
Lower bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in $[1/3, 2/3]$ (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$r_n \geq \Delta \exp \left(-c \frac{n \log(K)}{H} \right).$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to have a small regret (and recall that SR has a small regret with $\log(K)H$ rounds).
\(\mathcal{X} \)-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms \(\{1, \ldots, K\} \) is replaced by an arbitrary set \(\mathcal{X} \).

Theorem

Let \(\mathcal{X} \) be a compact subset of \(\mathbb{R}^D \) and \(\mathcal{F} \) be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

\[
\inf_{\text{player's strategy}} \sup_{\mathcal{F}} R_n = \tilde{\Theta} \left(n^{\frac{D+1}{D+2}} \right).
\]

Can we avoid the exponential dependence on the dimension?
\mathcal{X}-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X}.

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^D and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$\inf_{\text{player's strategy}} \sup_{\mathcal{F}} R_n = \tilde{\Theta} \left(n^{\frac{D+1}{D+2}} \right).$$

Can we avoid the exponential dependence on the dimension?
\(\mathcal{X} \)-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms \(\{1, \ldots, K\} \) is replaced by an arbitrary set \(\mathcal{X} \).

Theorem

Let \(\mathcal{X} \) be a compact subset of \(\mathbb{R}^D \) and \(\mathcal{F} \) be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

\[
\inf_{\text{player's strategy}} \sup_{\mathcal{F}} R_n = \tilde{\Theta} \left(n^{\frac{D+1}{D+2}} \right).
\]

Can we avoid the exponential dependence on the dimension?
Near-optimality dimension

Let ℓ be a *dissimilarity* measure, that is, a non-negative mapping $\ell : \mathcal{X}^2 \rightarrow \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : \mathcal{X} \rightarrow [0, 1]$, $\mathcal{X}_\epsilon = \{x \in \mathcal{X}, \sup f - f(x) \leq \epsilon\}$ and $\mathcal{P}(\mathcal{X}_\epsilon, \ell, \epsilon)$ be the packing number of \mathcal{X} with ℓ-open balls of radius ϵ. The near-optimality dimension of f is defined as

$$d(f) = \limsup_{\epsilon \to 0} \frac{\log \mathcal{P}(\mathcal{X}_\epsilon, \ell, \epsilon)}{\log \epsilon^{-1}}.$$

Example

Let $\mathcal{X} = [0, 1]^D$ and ℓ be some norm $\| \cdot \|$. Then $f(x) = \|x\|$ satisfies $d(f) = 0$ and $g(x) = \|x\|^2$ satisfies $d(g) = D/2$.
Near-optimality dimension

Let ℓ be a dissimilarity measure, that is, a non-negative mapping $\ell : X^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : X \to [0, 1]$, $X_\epsilon = \{x \in X, \sup f - f(x) \leq \epsilon\}$ and $P(X_\epsilon, \ell, \epsilon)$ be the packing number of X with ℓ-open balls of radius ϵ. The near-optimality dimension of f is defined as

$$d(f) = \limsup_{\epsilon \to 0} \frac{\log P(X_\epsilon, \ell, \epsilon)}{\log \epsilon^{-1}}.$$

Example

Let $X = [0, 1]^D$ and ℓ be some norm $\| \cdot \|$. Then $f(x) = \|x\|$ satisfies $d(f) = 0$ and $g(x) = \|x\|^2$ satisfies $d(g) = D/2$.
Near-optimality dimension

Let ℓ be a *dissimilarity* measure, that is, a non-negative mapping $\ell : X^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : X \to [0, 1]$, $X_\epsilon = \{x \in X, \sup f - f(x) \leq \epsilon\}$ and $\mathcal{P}(X_\epsilon, \ell, \epsilon)$ be the packing number of X with ℓ-open balls of radius ϵ. The near-optimality dimension of f is defined as

$$d(f) = \limsup_{\epsilon \to 0} \frac{\log \mathcal{P}(X_\epsilon, \ell, \epsilon)}{\log \epsilon^{-1}}.$$

Example

Let $X = [0, 1]^D$ and ℓ be some norm $\| \cdot \|$. Then $f(x) = \|x\|$ satisfies $d(f) = 0$ and $g(x) = \|x\|^2$ satisfies $d(g) = D/2$.

Sébastien Bubeck

Bandits Games
Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then the **Zooming algorithm** satisfies $R_n = \tilde{O} \left(n^{\frac{d+1}{d+2}} \right)$.

Theorem

Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then **HOO** satisfies (under mild 'compactness' assumption on \mathcal{X}) $R_n = \tilde{O} \left(n^{\frac{d+1}{d+2}} \right)$.

Sébastien Bubeck

Bandits Games
Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then the Zooming algorithm satisfies $R_n = \tilde{O} \left(n^{\frac{d+1}{d+2}} \right)$.

Theorem

Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then HOO satisfies (under mild ’compactness’ assumption on \mathcal{X}) $R_n = \tilde{O} \left(n^{\frac{d+1}{d+2}} \right)$.
Example

\(\mathcal{X} = [0, 1]^D, \alpha \geq 0 \) and mean-payoff function \(f \) locally "\(\alpha \)-smooth" around (any of) its maximum \(x^* \) (in finite number):

\[
f(x^*) - f(x) = \Theta(||x - x^*||^\alpha) \quad \text{as} \quad x \to x^*.
\]

Theorem

Assume that we run HOO using \(\ell(x, y) = ||x - y||^\beta \).

- Known smoothness: \(\beta = \alpha \). \(R_n = \tilde{O}(\sqrt{n}) \), i.e., the rate is independent of the dimension \(D \).
- Smoothness underestimated: \(\beta < \alpha \).
 \(R_n = \tilde{O}(n^{(d+1)/(d+2)}) \) where \(d = D \left(\frac{1}{\beta} - \frac{1}{\alpha} \right) \).
- Smoothness overestimated: \(\beta > \alpha \). No guarantee. Note: UCT corresponds to \(\beta = +\infty \).
Example

\[\mathcal{X} = [0, 1]^D, \alpha \geq 0 \] and mean-payoff function \(f \) locally "\(\alpha \)-smooth" around (any of) its maximum \(x^* \) (in finite number):

\[f(x^*) - f(x) = \Theta(||x - x^*||^\alpha) \text{ as } x \to x^*. \]

Theorem

Assume that we run HOO using \(\ell(x, y) = ||x - y||^\beta \).

- Known smoothness: \(\beta = \alpha \). \(R_n = \tilde{O}(\sqrt{n}) \), i.e., the rate is independent of the dimension \(D \).
- Smoothness underestimated: \(\beta < \alpha \).
 \(R_n = \tilde{O}(n^{(d+1)/(d+2)}) \) where \(d = D \left(\frac{1}{\beta} - \frac{1}{\alpha} \right) \).
- Smoothness overestimated: \(\beta > \alpha \). No guarantee. Note: UCT corresponds to \(\beta = +\infty \).
Example

\[\mathcal{X} = [0, 1]^D, \, \alpha \geq 0 \] and mean-payoff function \(f \) locally "\(\alpha \)-smooth" around (any of) its maximum \(x^* \) (in finite number):

\[f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha}) \text{ as } x \to x^*. \]

Theorem

Assume that we run HOO using \(\ell(x, y) = ||x - y||^\beta \).

- **Known smoothness:** \(\beta = \alpha \). \(R_n = \tilde{O}(\sqrt{n}) \), i.e., the rate is independent of the dimension \(D \).
- **Smoothness underestimated:** \(\beta < \alpha \).
 \(R_n = \tilde{O}(n^{(d+1)/(d+2)}) \) where \(d = D \left(\frac{1}{\beta} - \frac{1}{\alpha} \right) \).
- **Smoothness overestimated:** \(\beta > \alpha \). No guarantee. Note: \(UCT \) corresponds to \(\beta = +\infty \).
Example

$\mathcal{X} = [0, 1]^D$, $\alpha \geq 0$ and mean-payoff function f locally "α-smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^\alpha) \text{ as } x \to x^*.$$

Theorem

Assume that we run HOO using $\ell(x, y) = ||x - y||^\beta$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$.
 $$R_n = \tilde{O}(n^{(d+1)/(d+2)}) \text{ where } d = D \left(\frac{1}{\beta} - \frac{1}{\alpha} \right).$$
- Smoothness overestimated: $\beta > \alpha$. No guarantee. Note: UCT corresponds to $\beta = +\infty$.

Example

\[X = [0, 1]^D, \ \alpha \geq 0 \] and mean-payoff function \(f \) locally ”\(\alpha \)-smooth” around (any of) its maximum \(x^* \) (in finite number):

\[f(x^*) - f(x) = \Theta(||x - x^*||^\alpha) \text{ as } x \to x^*. \]

Theorem

Assume that we run HOO using \(\ell(x, y) = ||x - y||^\beta \).

- **Known smoothness**: \(\beta = \alpha \). \(R_n = \tilde{O}(\sqrt{n}) \), i.e., the rate is independent of the dimension \(D \).
- **Smoothness underestimated**: \(\beta < \alpha \).
 \[R_n = \tilde{O}(n^{(d+1)/(d+2)}) \text{ where } d = D \left(\frac{1}{\beta} - \frac{1}{\alpha}\right). \]
- **Smoothness overestimated**: \(\beta > \alpha \). No guarantee. Note: UCT corresponds to \(\beta = +\infty \).
For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$, possibly with the help of an external randomization.

2. Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \ldots, g_{K,t}) \in [0, 1]^K$.

3. The player receives (and observes) the gain $g_{I_t,t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{I_t,t}.$$
Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$, possibly with the help of an external randomization.

2. Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \ldots, g_{K,t}) \in [0, 1]^K$.

3. The player receives (and observes) the gain $g_{I_t,t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{I_t,t}. $$
For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $l_t \in \{1, \ldots, K\}$, possibly with the help of an external randomization.

2. Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \ldots, g_{K,t}) \in [0, 1]^K$.

3. The player receives (and observes) the gain $g_{l_t,t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^{n} g_{i,t} - \mathbb{E} \sum_{t=1}^{n} g_{l_t,t}.$$
Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$, possibly with the help of an external randomization.

2. Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \ldots, g_{K,t}) \in [0, 1]^K$.

3. The player receives (and observes) the gain $g_{I_t,t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \max_{i=1, \ldots, K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{I_t,t}.$$
Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

1. The player chooses an arm $I_t \in \{1, \ldots, K\}$, possibly with the help of an external randomization.

2. Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, \ldots, g_{K,t}) \in [0, 1]^K$.

3. The player receives (and observes) the gain $g_{I_t,t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$R_n = \max_{i=1, \ldots, K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{I_t,t}.$$
Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy, \(\sup R_n \geq \frac{1}{20} \sqrt{nK} \).

Moreover \(\text{Exp3} \) satisfies:

\[R_n \leq \sqrt{2nK \log K}. \]

We propose a new strategy, \(\text{INF} \), which satisfies \(R_n \leq 8\sqrt{nK} \).

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.
Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

\[
\sup R_n \geq \frac{1}{20} \sqrt{nK}.
\]

Moreover, Exp3 satisfies:

\[
R_n \leq \sqrt{2nK \log K}.
\]

We propose a new strategy, INF, which satisfies \(R_n \leq 8 \sqrt{nK} \).

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.
Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$\sup R_n \geq \frac{1}{20} \sqrt{nK}.$$

Moreover, Exp3 satisfies:

$$R_n \leq \sqrt{2nK \log K}.$$

We propose a new strategy, INF, which satisfies $R_n \leq 8\sqrt{nK}$.

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.
INF (Implicitly Normalized Forecaster)

Parameter: function \(\psi : \mathbb{R}^* \rightarrow \mathbb{R}^* \) increasing, convex, twice continuously differentiable, and such that \((0, 1] \subset \psi(\mathbb{R}^*)\).

Let \(p_1 \) be the uniform distribution over \(\{1, \ldots, K\} \).

For each round \(t = 1, 2, \ldots, n \);

1. \(l_t \sim p_t \).
2. Compute \(\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t=i} \) and \(\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s} \).
3. Compute the new probability distribution:

\[
P_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)
\]

where \(C_t \) is the unique real number such that \(\sum_{i=1}^{K} p_{i,t+1} = 1 \).
INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^* \to \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*_*)$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

1. $l_t \sim p_t$.
2. Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} 1_{l_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s}$.
3. Compute the new probability distribution:

$$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

where C_t is the unique real number such that $\sum_{i=1}^{K} p_{i,t+1} = 1$.
INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^* \rightarrow \mathbb{R}^*_+$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*)$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

1. $l_t \sim p_t$.
2. Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} 1_{l_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s}$.
3. Compute the new probability distribution:

 $$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

 where C_t is the unique real number such that $\sum_{i=1}^{K} p_{i,t+1} = 1$.
INF (Implicitly Normalized Forecaster)

Parameter: function \(\psi : \mathbb{R}^* \rightarrow \mathbb{R}^+ \) increasing, convex, twice continuously differentiable, and such that \((0, 1] \subset \psi(\mathbb{R}^*)\).

Let \(p_1 \) be the uniform distribution over \(\{1, \ldots, K\} \).

For each round \(t = 1, 2, \ldots, n \);

1. \(l_t \sim p_t \).
2. Compute \(\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t=i} \) and \(\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s} \).
3. Compute the new probability distribution:

\[
p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)
\]

where \(C_t \) is the unique real number such that \(\sum_{i=1}^{K} p_{i,t+1} = 1 \).
INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^* \to \mathbb{R}^+$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*)$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

1. $l_t \sim p_t$.
2. Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} l_{t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s}$.
3. Compute the new probability distribution:

$$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

where C_t is the unique real number such that $\sum_{i=1}^{K} p_{i,t+1} = 1$.
INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^* \rightarrow \mathbb{R}^+$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*)$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

1. $l_t \sim p_t$.
2. Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t = i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^{t} \tilde{g}_{i,s}$.
3. Compute the new probability distribution:

$$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

where C_t is the unique real number such that $\sum_{i=1}^{K} p_{i,t+1} = 1$.
Examples

1. \(\psi(x) = \exp(\eta x) + \frac{\gamma}{K} \) with \(\eta > 0 \) and \(\gamma \in [0, 1) \); this corresponds exactly to the Exp3 strategy.

2. \(\psi(x) = \left(\frac{\eta}{-x} \right)^q + \frac{\gamma}{K} \) with \(q > 1, \eta > 0 \) and \(\gamma \in [0, 1) \); this is a new strategy which will be proved to be minimax optimal for appropriate parameters.
Examples

1. $\psi(x) = \exp(\eta x) + \frac{\gamma}{K}$ with $\eta > 0$ and $\gamma \in [0, 1)$; this corresponds exactly to the Exp3 strategy.

2. $\psi(x) = \left(\frac{\eta}{-x}\right)^q + \frac{\gamma}{K}$ with $q > 1$, $\eta > 0$ and $\gamma \in [0, 1)$; this is a new strategy which will be proved to be minimax optimal for appropriate parameters.
Regret bound for Poly INF

Theorem

Consider $\psi(x) = \left(\frac{\eta}{-x}\right)^q + \frac{\gamma}{K}$ with $\gamma = \min\left(\frac{1}{2}, \sqrt{\frac{3K}{n}}\right)$, $\eta = \sqrt{5n}$ and $q = 2$. Then INF satisfies:

$$R_n \leq 8\sqrt{nK}.$$
Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t} (p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1} - p_{i,t})\psi^{-1}(p_{i,t+1}) = -\int_{p_{i,t+1}}^{p_{i,t}} \psi^{-1}(u)du + \frac{(p_{i,t} - p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u)du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on...
Proof

By an **Abel transform** we shift the focus from:

\[
\sum_{t=1}^{n} g_{l,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})
\]

to

\[
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t} (p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t}).
\]

Then a **Taylor expansion** gives us:

\[
(p_{i,t+1} - p_{i,t})\psi^{-1}(p_{i,t+1}) = -\int_{p_{i,t+1}}^{p_{i,t}} \psi^{-1}(u)du + \frac{(p_{i,t} - p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.
\]

The first resulting term: \(-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u)du\) is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on...
Proof

By an Abel transform we shift the focus from:

\[\sum_{t=1}^{n} g_{t,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1}) \]

to

\[\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t} (p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t}). \]

Then a Taylor expansion gives us:

\[(p_{i,t+1} - p_{i,t})\psi^{-1}(p_{i,t+1}) = - \int_{p_{i,t+1}}^{p_{i,t}} \psi^{-1}(u)du + \frac{(p_{i,t} - p_{i,t+1})^2}{2\psi'((\psi^{-1}(\tilde{p}_{i,t+1}))}. \]

The first resulting term: \(- \sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u)du\) is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

\[p_{i,t} - p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t) - \psi(\tilde{G}_{i,t+1} - C_{t+1}) \]
Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t}(\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t}(p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1} - p_{i,t})\psi^{-1}(p_{i,t+1}) = -\int_{p_{i,t+1}}^{p_{i,t}} \psi^{-1}(u)du + \frac{(p_{i,t} - p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $$-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u)du$$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t} - p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t) - \psi(\tilde{G}_{i,t+1} - C_{t+1})$$

as well as a careful treatment of the "shift" introduced by $\tilde{p}_{i,t+1}$.

Sébastien Bubeck

Bandits Games
By an Abel transform we shift the focus from:

\[
\sum_{t=1}^{n} g_{l, t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}(\tilde{G}_{i, t} - \tilde{G}_{i, t-1})
\]

to

\[
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i, t}(p_{i, t+1} - p_{i, t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i, t+1})(p_{i, t+1} - p_{i, t}).
\]

Then a Taylor expansion gives us:

\[
(p_{i, t+1} - p_{i, t}) \psi^{-1}(p_{i, t+1}) = -\int_{p_{i, t+1}}^{p_{i, t}} \psi^{-1}(u) du + \frac{(p_{i, t} - p_{i, t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i, t+1}))}.
\]

The first resulting term: \(-\sum_{i=1}^{K} \int_{p_{i, n+1}}^{1/K} \psi^{-1}(u) du \) is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

\[
p_{i, t} - p_{i, t+1} = \psi(\tilde{G}_{i, t} - C_t) - \psi(\tilde{G}_{i, t+1} - C_{t+1})
\]
as well as a careful treatment of the "shift" introduced by \(\tilde{p}_{i, t+1} \).
The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.
The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.
The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.
The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

