Bandits Games

Sébastien Bubeck

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...

Real applications include:

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,

- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

• The player chooses an arm $I_t \in \{1, \ldots, K\}$.

2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0,1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i=1,\ldots,K} \alpha_{i+1} \Delta_i = \mu_i$, $\Delta_i = \mu_i$, Δ_i

For each round $t = 1, 2, \ldots, n$;

• The player chooses an arm $I_t \in \{1, \ldots, K\}$.

2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0, 1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0, 1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, \ldots, K\}$.
- ⁽²⁾ The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0, 1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, \ldots, K\}$.
- The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0, 1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum Y_t.$$

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions (over [0, 1]) ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K). Notations: $\mu^* = \max_{i=1,\ldots,K} \mu_i$, $\Delta_i = \mu^* - \mu_i$, $\Delta = \min_{i:\Delta_i > 0} \Delta_i$, *c* denotes an absolute numerical constant.

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, \ldots, K\}$.
- 2 The environment draws the reward Y_t from ν_{l_t} (and independently from the past given l_t).

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1} Y_t.$$

Strategies based on optimism in face of uncertainty

- Let T_i(t) be the number of times arm i has been selected up to time t.
- Let X
 _{i,t} be the empirical mean of arm i at time t (that is based on T_i(t) rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$I_{t+1} = rg\max_{i \in \{1,...,K\}} \widehat{X}_{i,t} + \sqrt{rac{lpha \log t}{\mathcal{T}_i(t)}} \; .$$

 MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$Y_{t+1} = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t} + 1$$

Sébastien Bubeck Bar

Bandits Games

Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm *i* has been selected up to time *t*.
- Let $\widehat{X}_{i,t}$ be the empirical mean of arm *i* at time *t* (that is based on $T_i(t)$ rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$I_{t+1} = rg\max_{i \in \{1,...,K\}} \widehat{X}_{i,t} + \sqrt{rac{lpha \log t}{\mathcal{T}_i(t)}} \; .$$

• MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$X_{t+1} = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t} + 1$$

Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm *i* has been selected up to time *t*.
- Let X_{i,t} be the empirical mean of arm i at time t (that is based on T_i(t) rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$I_{t+1} = \arg \max_{i \in \{1,...,K\}} \widehat{X}_{i,t} + \sqrt{rac{lpha \log t}{\mathcal{T}_i(t)}} \; .$$

• MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$X_{t+1} = rg\max_{i \in \{1,...,K\}} \widehat{X}_{i,t} +$$

 $\sqrt{\frac{\max\left(\log\left(\frac{n}{\kappa T_{i}(t)}\right),0}{T_{i}(t)}\right)}$

Bandits Games

Strategies based on optimism in face of uncertainty

- Let $T_i(t)$ be the number of times arm i has been selected up to time t.
- Let $X_{i,t}$ be the empirical mean of arm *i* at time *t* (that is based on $T_i(t)$ rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$I_{t+1} = \arg \max_{i \in \{1,...,K\}} \widehat{X}_{i,t} + \sqrt{rac{lpha \log t}{\mathcal{T}_i(t)}} \; .$$

 MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$I_{t+1} = \arg \max_{i \in \{1, \dots, K\}} \widehat{X}_{i,t} + \sqrt{\frac{\max\left(\log\left(\frac{n}{KT_i(t)}\right), 0\right)}{T_i(t)}}$$

Sébastien Bubeck

Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))

There exists $f : (1/2, +\infty) \to \mathbb{R}$ such that UCB with $\alpha > 1/2$ satisfies for any $n \ge K \ge 2$:

 $R_n \leq \sum_{i:\Delta_i>0} \frac{4lpha}{\Delta_i} \log(n) + Kf(lpha), \text{ and } R_n \leq \sqrt{nK(4lpha \log(n) + f(lpha))}.$

Theorem

MOSS satisfies:

$$R_n \leq \frac{cK}{\Delta}\log(n), \text{ and } R_n \leq c\sqrt{nK}.$$

Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))

There exists $f : (1/2, +\infty) \to \mathbb{R}$ such that UCB with $\alpha > 1/2$ satisfies for any $n \ge K \ge 2$:

 $R_n \leq \sum_{i:\Delta_i>0} \frac{4lpha}{\Delta_i} \log(n) + Kf(lpha), \text{ and } R_n \leq \sqrt{nK(4lpha \log(n) + f(lpha))}.$

Theorem

MOSS satisfies:

$$R_n \leq rac{cK}{\Delta}\log(n), \ and \ R_n \leq c\sqrt{nK}.$$

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for *n* rounds. Then the player outputs a recommendation $J_n \in \{1, ..., K\}$.

Goal: Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}\mu_{J_n}$.

Theorem

$$\inf_{player's \ strategy} \sup_{\nu} r_n = \Theta\left(\sqrt{\frac{K}{n}}\right).$$

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for *n* rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}\mu_{J_n}$.

Theorem

$$\inf_{player's \ strategy} \sup_{\nu} r_n = \Theta\left(\sqrt{\frac{K}{n}}\right).$$

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for *n* rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}\mu_{J_n}$.

Theorem

$$\inf_{player's \ strategy} \sup_{\nu} r_n = \Theta\left(\sqrt{\frac{K}{n}}\right).$$

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for *n* rounds. Then the player outputs a recommendation $J_n \in \{1, \ldots, K\}$. **Goal:** Maximize the expected reward of the recommended arm. We consider the regret $r_n = \mu^* - \mathbb{E}\mu_{J_n}$.

Theorem

$$\inf_{player's \ strategy} \sup_{\nu} r_n = \Theta\left(\sqrt{\frac{\kappa}{n}}\right).$$

Uniform strategy

For each $i \in \{1, ..., K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp\left(-c \frac{n\Delta^2}{K}\right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better ? Assume that there exists a unique optimal arm i^* , then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.

Uniform strategy

For each $i \in \{1, ..., K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp\left(-c \frac{n\Delta^2}{K}\right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better ? Assume that there exists a unique optimal arm i^* , then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.

Uniform strategy

For each $i \in \{1, ..., K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp\left(-c \frac{n\Delta^2}{K}\right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better ?

Assume that there exists a unique optimal arm i^* , then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.

Uniform strategy

For each $i \in \{1, ..., K\}$, select arm i during $\lfloor n/K \rfloor$ rounds. Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$r_n \leq K \exp\left(-c \frac{n\Delta^2}{K}\right).$$

Informally, the uniform strategy needs (of order of) K/Δ^2 rounds to have a small regret. Can we do better ? Assume that there exists a unique optimal arm i^* , then we have strategies that require only $H = \sum_{i \neq i^*} 1/\Delta_i^2$ rounds to have a small regret.

The smaller R_n the larger r_n !

Theorem

Consider any strategy and let $\epsilon : \mathbb{N} \to \mathbb{R}$ be such that for all (Bernoulli) distributions ν_1, \ldots, ν_K on the rewards, we have

 $R_n \leq c\epsilon(n),$

then for all sets of $K \ge 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, up to a permutation of the arms we have,

 $r_n \geq \Delta \exp(-c\epsilon(n))$.

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

(1) For each $i \in A_k$, select arm *i* during n_k rounds.

(2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

(1) For each $i \in A_k$, select arm *i* during n_k rounds.

(2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

(1) For each $i \in A_k$, select arm i during n_k rounds.

(2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

SR satisfies (for well chosen (n_k)):

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$
Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}$.

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm *i* during n_k rounds.
- (2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}.$

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm i during n_k rounds.
- (2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}.$

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm i during n_k rounds.
- (2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Successive Rejects (SR)

Let $A_1 = \{1, ..., K\}.$

For each phase $k = 1, 2, \ldots, K - 1$:

- (1) For each $i \in A_k$, select arm i during n_k rounds.
- (2) Let $A_{k+1} = A_k \setminus \{j\}$, where j is the arm in A_k with the smallest empirical mean.

Let J_n be the unique element of A_K .

Theorem

$$r_n \leq K^2 \exp\left(-c \frac{n}{\log(K)H}\right).$$

Lower bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in [1/3, 2/3] (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$r_n \geq \Delta \exp\left(-c \frac{n \log(K)}{H}\right).$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to have a small regret (and recall that SR has a small regret with $\log(K)H$ rounds).

Lower bound

Theorem

Let ν_1, \ldots, ν_K be Bernoulli distributions with parameters in [1/3, 2/3] (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$r_n \geq \Delta \exp\left(-c \frac{n \log(K)}{H}\right)$$

Informally, any algorithm requires at least (of order of) $H/\log(K)$ rounds to have a small regret (and recall that SR has a small regret with $\log(K)H$ rounds).

\mathcal{X} -armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X} .

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^D and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$\inf_{ ext{player's strategy }\mathcal{F}} \sup_{\mathcal{F}} R_n = ilde{\Theta}\left(n^{rac{D+1}{D+2}}
ight).$$

Can we avoid the exponential dependence on the dimension ?

\mathcal{X} -armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X} .

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$\inf_{player's \ strategy} \sup_{\mathcal{F}} R_n = ilde{\Theta}\left(n^{rac{D+1}{D+2}}
ight).$$

Can we avoid the exponential dependence on the dimension ?

\mathcal{X} -armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X} .

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$\inf_{player's \ strategy} \sup_{\mathcal{F}} R_n = \tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right).$$

Can we avoid the exponential dependence on the dimension ?

Near-optimality dimension

Let ℓ be a *dissimilarity* measure, that is, a non-negative mapping $\ell : \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : \mathcal{X} \to [0,1]$, $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, \sup f - f(x) \leq \epsilon\}$ and $\mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)$ be the packing number of \mathcal{X} with ℓ -open balls of radius ϵ . The near-optimality dimension of f is defined as $d(f) = \limsup_{\epsilon \to 0} \frac{\log \mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)}{\log \epsilon^{-1}}.$

Example

Let $\mathcal{X} = [0, 1]^D$ and ℓ be some norm $|| \cdot ||$. Then f(x) = ||x|| satisfies d(f) = 0 and $g(x) = ||x||^2$ satisfies d(g) = D/2.

Near-optimality dimension

Let ℓ be a *dissimilarity* measure, that is, a non-negative mapping $\ell : \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : \mathcal{X} \to [0, 1]$, $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, \sup f - f(x) \leq \epsilon\}$ and $\mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)$ be the packing number of \mathcal{X} with ℓ -open balls of radius ϵ . The near-optimality dimension of f is defined as $d(f) = \limsup_{\epsilon \to 0} \frac{\log \mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)}{\log \epsilon^{-1}}$.

Example

Let $\mathcal{X} = [0, 1]^D$ and ℓ be some norm $|| \cdot ||$. Then f(x) = ||x|| satisfies d(f) = 0 and $g(x) = ||x||^2$ satisfies d(g) = D/2.

Near-optimality dimension

Let ℓ be a *dissimilarity* measure, that is, a non-negative mapping $\ell : \mathcal{X}^2 \to \mathbb{R}$ satisfying $\ell(x, x) = 0$.

Definition

Let $f : \mathcal{X} \to [0,1]$, $\mathcal{X}_{\epsilon} = \{x \in \mathcal{X}, \sup f - f(x) \leq \epsilon\}$ and $\mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)$ be the packing number of \mathcal{X} with ℓ -open balls of radius ϵ . The near-optimality dimension of f is defined as $d(f) = \limsup_{\epsilon \to 0} \frac{\log \mathcal{P}(\mathcal{X}_{\epsilon}, \ell, \epsilon)}{\log \epsilon^{-1}}$.

Example

Let
$$\mathcal{X} = [0, 1]^D$$
 and ℓ be some norm $|| \cdot ||$. Then $f(x) = ||x||$ satisfies $d(f) = 0$ and $g(x) = ||x||^2$ satisfies $d(g) = D/2$.

Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \ge 0$ (with respect to ℓ). Then the Zooming algorithm satisfies $R_n = \tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Theorem

Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \ge 0$ (with respect to ℓ). Then HOO satisfies (under mild 'compactness' assumption on \mathcal{X}) $R_n = \tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \ge 0$ (with respect to ℓ). Then the Zooming algorithm satisfies $R_n = \tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Theorem

Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \ge 0$ (with respect to ℓ). Then HOO satisfies (under mild 'compactness' assumption on \mathcal{X}) $R_n = \tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Example

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO using $\ell(x,y) = ||x-y||^{eta}$

- Known smoothness: β = α. R_n = O(√n), i.e., the rate is independent of the dimension D.
- Smoothness underestimated: eta < lpha.
 - $R_n = ilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(rac{1}{eta} rac{1}{lpha}
 ight).$

 Smoothness overestimated: β > α. No guarantee. Note: UCT corresponds to β = +∞.

Example

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^lpha)$$
 as $x o x^*.$

Theorem

Assume that we run HOO using $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension *D*.
- Smoothness underestimated: $\beta < \alpha$.
 - $R_n = \hat{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT corresponds to β = +∞.

Example

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO using $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$. $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$
- Smoothness overestimated: β > α. No guarantee. Note: UCT corresponds to β = +∞.

Example

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO using $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$. $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT corresponds to β = +∞.

Example

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO using $\ell(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$. $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.
- Smoothness overestimated: β > α. No guarantee. Note: UCT corresponds to β = +∞.

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

- O The player chooses an arm I_t ∈ {1,..., K}, possibly with the help of an external randomization.
- ② Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, ..., g_{K,t}) \in [0, 1]^K$.

If the player receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- ② Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, ..., g_{K,t}) \in [0, 1]^K$.

If the player receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, ..., g_{K,t}) ∈ [0, 1]^K.$

If the player receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector g_t = (g_{1,t},...,g_{K,t}) ∈ [0,1]^K.
- **③** The player receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $I_t \in \{1, ..., K\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a gain vector $g_t = (g_{1,t}, ..., g_{K,t}) ∈ [0, 1]^K.$
- The player receives (and observes) the gain $g_{l_t,t}$.

$$R_n = \max_{i=1,\ldots,K} \mathbb{E} \sum_{t=1}^n g_{i,t} - \mathbb{E} \sum_{t=1}^n g_{l_t,t}.$$

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$\sup R_n \geq \frac{1}{20}\sqrt{nK}.$$

Moreover Exp3 satisfies:

 $R_n \leq \sqrt{2nK\log K}.$

We propose a new strategy, INF, which satisfies $R_n \leq 8\sqrt{nK}$.

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$\sup R_n \geq \frac{1}{20}\sqrt{nK}.$$

Moreover Exp3 satisfies:

 $R_n \leq \sqrt{2nK\log K}.$

We propose a new strategy, INF, which satisfies $R_n \leq 8\sqrt{nK}$.

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$\sup R_n \geq \frac{1}{20}\sqrt{nK}.$$

Moreover Exp3 satisfies:

 $R_n \leq \sqrt{2nK\log K}.$

We propose a new strategy, INF, which satisfies $R_n \leq 8\sqrt{nK}$.

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi(\mathbb{R}^*_{-})$.

- Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.
- For each round $t = 1, 2, \ldots, n$;
 - $I_t \sim p_t.$
 - ⁽³⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.
 - Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi(\mathbb{R}^*_{-})$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

- For each round $t = 1, 2, \ldots, n$;
 - $I_t \sim p_t.$
 - ⁽³⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*_{-})$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

 $I_t \sim p_t.$

⁽³⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*_{-})$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

For each round $t = 1, 2, \ldots, n$;

 $I_t \sim p_t.$

⁽³⁾ Compute $\tilde{g}_{i,t} = \frac{g_{i,t}}{p_{i,t}} \mathbb{1}_{l_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0, 1] \subset \psi(\mathbb{R}^*_{-})$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

- For each round $t = 1, 2, \ldots, n$;
 - $I_t \sim p_t.$
 - $\textbf{O} \quad \text{Compute } \tilde{g}_{i,t} = \frac{g_{i,t}}{\rho_{i,t}} \mathbb{1}_{I_t=i} \text{ and } \tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}.$

Ompute the new probability distribution:

 $p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi : \mathbb{R}^*_{-} \to \mathbb{R}^*_{+}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi(\mathbb{R}^*_{-})$.

Let p_1 be the uniform distribution over $\{1, \ldots, K\}$.

- For each round $t = 1, 2, \ldots, n$;
 - $I_t \sim p_t.$
 - Sompute $\tilde{g}_{i,t} = \frac{g_{i,t}}{\rho_{i,t}} \mathbb{1}_{I_t=i}$ and $\tilde{G}_{i,t} = \sum_{s=1}^t \tilde{g}_{i,s}$.
 - **Organization** Second and A sec

$$p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t)$$

ψ(x) = exp(ηx) + γ/K with η > 0 and γ ∈ [0, 1); this corresponds exactly to the Exp3 strategy.
 ψ(x) = (n/(-x))^q + γ/K with q > 1, η > 0 and γ ∈ [0, 1); this is a new strategy which will be proved to be minimax optimal for appropriate parameters.

Examples

ψ(x) = exp(ηx) + γ/K with η > 0 and γ ∈ [0, 1); this corresponds exactly to the Exp3 strategy.
 ψ(x) = (η/(-x))^q + γ/K with q > 1, η > 0 and γ ∈ [0, 1); this is a new strategy which will be proved to be minimax optimal for appropriate parameters.

Regret bound for Poly INF

Theorem

Consider
$$\psi(x) = \left(\frac{\eta}{-x}\right)^q + \frac{\gamma}{K}$$
 with $\gamma = \min\left(\frac{1}{2}, \sqrt{\frac{3K}{n}}\right)$, $\eta = \sqrt{5n}$ and $q = 2$. Then INF satisfies:

 $R_n \leq 8\sqrt{nK}.$
Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

 $(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_t,t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1}\sum_{i=1}^{K}\tilde{G}_{i,t}(p_{i,t+1}-p_{i,t})=\sum_{i=1}^{K}\sum_{t=1}^{n-1}\psi^{-1}(p_{i,t+1})(p_{i,t+1}-p_{i,t}).$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t} - p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t) - \psi(\tilde{G}_{i,t+1} - C_{t+1})$$

Sébastien Bubeck Bandits Games

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t}(p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t})$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t}-p_{i,t+1}=\psi(\tilde{G}_{i,t}-C_t)-\psi(\tilde{G}_{i,t+1}-C_{t+1})$$

as well as a careful treatment of the "shift" introduced by $\widetilde{p}_{i,t+1}$

Proof

By an Abel transform we shift the focus from:

$$\sum_{t=1}^{n} g_{l_{t},t} = \sum_{t=1}^{n} \sum_{i=1}^{K} p_{i,t} (\tilde{G}_{i,t} - \tilde{G}_{i,t-1})$$

to

$$\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i,t}(p_{i,t+1} - p_{i,t}) = \sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}(p_{i,t+1})(p_{i,t+1} - p_{i,t})$$

Then a Taylor expansion gives us:

$$(p_{i,t+1}-p_{i,t})\psi^{-1}(p_{i,t+1})=-\int_{p_{i,t+1}}^{p_{i,t}}\psi^{-1}(u)du+\frac{(p_{i,t}-p_{i,t+1})^2}{2\psi'(\psi^{-1}(\tilde{p}_{i,t+1}))}.$$

The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i,n+1}}^{1/K} \psi^{-1}(u) du$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$p_{i,t} - p_{i,t+1} = \psi(\tilde{G}_{i,t} - C_t) - \psi(\tilde{G}_{i,t+1} - C_{t+1})$$

as well as a careful treatment of the "shift" introduced by $\tilde{p}_{i,t+1}$.

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

- H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematics Society, 1952.
- P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: the adversarial multi-armed bandit problem. In *Proceedings of the 36th Annual Symposium on Foundations of Computer Science*, 1995.
- P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning Journal*, 2002.
- R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In *Proceedings of the 40th ACM Symposium on Theory of Computing*, 2008.
- J.-Y. Audibert, R. Munos, and Cs. Szepesvári. Exploration-exploitation trade-off using variance estimates in multi-armed bandits. *Theoretical Computer Science*, 2009.

- S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvari. Online optimization in *X*-armed bandits. In *Advances in Neural Information Processing Systems (NIPS) 22*, 2009.
- J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits. In *Proc. of the 22nd annual conference on learning theory (COLT)*, 2009.
- S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. In *Proc. of the 20th International Conference on Algorithmic Learning Theory (ALT)*, 2009.
- J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In *Proc. of the 23rd annual conference on learning theory (COLT)*, 2010.
- S. Bubeck and R. Munos. Open loop optimistic planning. In 23rd annual conference on learning theory (COLT), 2010.