Bandits Games

Sébastien Bubeck

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
and many more extensions, with additional rules, new regret
notions, different feedback assumptions, etc
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc
Real applications include:
- ads placement on webrages,
- computer Go,
- cognitive radio,
- nackets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
and many more extensions, with additional rules, new regret
notions different feedback assumptions, etc
Real applications include:
- ads placement on webpages,
- computer Go.
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
and many more extensions, with additional rules, new regret
notions, different feedback assumptions, etc
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret, ... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret, ... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing

Introduction

Bandits games are a framework for sequential decision making under various scenarios:

- Continuous or discrete set of actions,
- Adversarial or stochastic environment,
- different objectives: cumulative regret or simple regret,
... and many more extensions, with additional rules, new regret notions, different feedback assumptions, etc ...
Real applications include:
- ads placement on webpages,
- computer Go,
- cognitive radio,
- packets routing.

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]) \nu_{1}, \ldots, \nu_{K}$ of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations:
$\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant
For each round $t=1,2$
(1) The player chooses an arm
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and
independently from the past given I_{t})
Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret:

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$.
$\Delta=\min _{j:} \Delta_{i}>0 \Delta_{i}, c$ denotes an absolute numerical constant
For each round $t=1,2$
(1) The nlaver chooses an arm
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and independently from the past given I_{t})
Goal: Maximize (in expectation) the cumulative rewards Equivalently we want to minimize the cumulative regret

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations: $\mu^{*}=\max _{i=1, \ldots, K} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$, $\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant.

For each round $t=1,2$,
(1) The player chooses an arm
(2) The environment draws the reward γ_{t} from $\nu_{l_{t}}$ (and independently from the past given I_{t})
Goal: Maximize (in expectation) the cumulative rewards Equivalently we want to minimize the cumulative regret:

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations: $\mu^{*}=\max _{i=1, \ldots, K} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$, $\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant.
For each round $t=1,2, \ldots, n$;
(1) The player chooses an arm
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and
independently from the past given I_{t}).
Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret:

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations: $\mu^{*}=\max _{i=1, \ldots, K} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$, $\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant.
For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$.
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and
independently from the past given I_{t}).
Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret:

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations: $\mu^{*}=\max _{i=1, \ldots, K} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$, $\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant.
For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$.
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and independently from the past given I_{t}).
Goal: Maximize (in expectation) the cumulative rewards.
Equivalently we want to minimize the cumulative regret:

Classical bandit game, Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.
Parameters unknown to the player: the reward distributions (over $[0,1]$) ν_{1}, \ldots, ν_{K} of the arms (with respective means $\left.\mu_{1}, \ldots, \mu_{K}\right)$. Notations: $\mu^{*}=\max _{i=1, \ldots, K} \mu_{i}, \Delta_{i}=\mu^{*}-\mu_{i}$, $\Delta=\min _{i: \Delta_{i}>0} \Delta_{i}, c$ denotes an absolute numerical constant.
For each round $t=1,2, \ldots, n$;
(1) The player chooses an arm $I_{t} \in\{1, \ldots, K\}$.
(2) The environment draws the reward Y_{t} from $\nu_{l_{t}}$ (and independently from the past given I_{t}).
Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$
R_{n}=n \mu^{*}-\mathbb{E} \sum_{t=1}^{n} Y_{t}
$$

Strategies based on optimism in face of uncertainty

- Let $T_{i}(t)$ be the number of times arm i has been selected up to time t.
- Let $X_{i, t}$ be the empirical mean of arm i at time t (that is based on $T_{i}(t)$ rewards)
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002)
- MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009)

Strategies based on optimism in face of uncertainty

- Let $T_{i}(t)$ be the number of times arm i has been selected up to time t.
- Let $\widehat{X}_{i, t}$ be the empirical mean of arm i at time t (that is based on $T_{i}(t)$ rewards).

Fischer (2002)

- MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009)

Strategies based on optimism in face of uncertainty

- Let $T_{i}(t)$ be the number of times arm i has been selected up to time t.
- Let $\widehat{X}_{i, t}$ be the empirical mean of arm i at time t (that is based on $T_{i}(t)$ rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$
I_{t+1}=\arg \max _{i \in\{1, \ldots, K\}} \widehat{X}_{i, t}+\sqrt{\frac{\alpha \log t}{T_{i}(t)}}
$$

- MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

Strategies based on optimism in face of uncertainty

- Let $T_{i}(t)$ be the number of times arm i has been selected up to time t.
- Let $\widehat{X}_{i, t}$ be the empirical mean of arm i at time t (that is based on $T_{i}(t)$ rewards).
- UCB (Upper Confidence Bound), Auer, Cesa-Bianchi, and Fischer (2002):

$$
I_{t+1}=\arg \max _{i \in\{1, \ldots, K\}} \widehat{X}_{i, t}+\sqrt{\frac{\alpha \log t}{T_{i}(t)}}
$$

- MOSS (Minimax Optimal Stochastic Strategy), Audibert and Bubeck (2009):

$$
I_{t+1}=\arg \max _{i \in\{1, \ldots, K\}} \widehat{X}_{i, t}+\sqrt{\frac{\max \left(\log \left(\frac{n}{K T_{i}(t)}\right), 0\right)}{T_{i}(t)}} .
$$

Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))
There exists $f:(1 / 2,+\infty) \rightarrow \mathbb{R}$ such that UCB with $\alpha>1 / 2$ satisfies for any $n \geq K \geq 2$:

$$
R_{n} \leq \sum_{i: \Delta_{i}>0} \frac{4 \alpha}{\Delta_{i}} \log (n)+K f(\alpha), \text { and } R_{n} \leq \sqrt{n K(4 \alpha \log (n)+f(\alpha))} .
$$

Theorem
MOSS satisfies.

Regret bounds for UCB and MOSS

Theorem (Auer, Cesa-Bianchi, and Fischer (2002), Audibert, Munos, and Szepesvári (2009), Bubeck (2010))
There exists $f:(1 / 2,+\infty) \rightarrow \mathbb{R}$ such that UCB with $\alpha>1 / 2$ satisfies for any $n \geq K \geq 2$:
$R_{n} \leq \sum_{i: \Delta_{i}>0} \frac{4 \alpha}{\Delta_{i}} \log (n)+K f(\alpha)$, and $R_{n} \leq \sqrt{n K(4 \alpha \log (n)+f(\alpha))}$.

Theorem

MOSS satisfies:

$$
R_{n} \leq \frac{c K}{\Delta} \log (n), \text { and } R_{n} \leq c \sqrt{n K}
$$

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_{n} \in\{1, \ldots, K\}$.
Goal: Maximize the expected reward of the recommended arm We consider the regret $r_{n}=\mu^{*}-\mathbb{E} \mu \rho$

Theorem

Here we focus on the speed of convergence (to 0) of r_{n} as a function of

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_{n} \in\{1, \ldots, K\}$.
Goal: Maximize the expected reward of the recommended arm. We consider the regret $r_{n}=\mu^{*}-\mathbb{E} \mu J_{n}$.

Theorem

Here we focus on the speed of convergence (to 0) of r_{n} as a function of

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_{n} \in\{1, \ldots, K\}$.
Goal: Maximize the expected reward of the recommended arm.
We consider the regret $r_{n}=\mu^{*}-\mathbb{E} \mu J_{n}$.

Theorem

$$
\inf _{\text {player's strategy }} \sup _{\nu} r_{n}=\Theta\left(\sqrt{\frac{K}{n}}\right)
$$

Here we focus on the speed of convergence (to 0) of r_{n} as a function of ν

Pure exploration bandit game, joint work with Jean-Yves Audibert, Rémi Munos and Gilles Stoltz

Classical bandit game for n rounds. Then the player outputs a recommendation $J_{n} \in\{1, \ldots, K\}$.
Goal: Maximize the expected reward of the recommended arm.
We consider the regret $r_{n}=\mu^{*}-\mathbb{E} \mu J_{n}$.

Theorem

$$
\inf _{\text {player's strategy }} \sup _{\nu} r_{n}=\Theta\left(\sqrt{\frac{K}{n}}\right)
$$

Here we focus on the speed of convergence (to 0) of r_{n} as a function of ν.

Uniform strategy

For each $i \in\{1, \ldots, K\}$, select arm i during $\lfloor n / K\rfloor$ rounds.
Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

Informally, the uniform strategy needs (of order of) K / Δ^{2} rounds
to have a small regret. Can we do better ?
Assume that there exists a unique optimal arm i^{*}, then we have
strategies that require only $H=\sum_{i \neq i^{*}} 1 / \Delta_{i}^{2}$ rounds to have a
small regret.

Uniform strategy

For each $i \in\{1, \ldots, K\}$, select arm i during $\lfloor n / K\rfloor$ rounds.
Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$
r_{n} \leq K \exp \left(-c \frac{n \Delta^{2}}{K}\right)
$$

Informally, the uniform strategy needs (of order of) K / Δ^{2} rounds
to have a small regret. Can we do better ?
Assume that there exists a unique optimal arm i^{*}, then we have strategies that require only $H=\sum_{i \neq i^{*}} 1 / \Delta_{i}^{2}$ rounds to have a small regret.

Uniform strategy

For each $i \in\{1, \ldots, K\}$, select arm i during $\lfloor n / K\rfloor$ rounds.
Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$
r_{n} \leq K \exp \left(-c \frac{n \Delta^{2}}{K}\right)
$$

Informally, the uniform strategy needs (of order of) K / Δ^{2} rounds to have a small regret. Can we do better ?
Assume that there exists a unique optimal arm i^{*}, then we have strategies that require only $H=\sum_{i \neq i^{*}} 1 / \Delta_{i}^{2}$ rounds to have a small regret.

Uniform strategy

For each $i \in\{1, \ldots, K\}$, select arm i during $\lfloor n / K\rfloor$ rounds.
Recommend the arm with highest empirical mean.

Theorem

The uniform strategy satisfies:

$$
r_{n} \leq K \exp \left(-c \frac{n \Delta^{2}}{K}\right)
$$

Informally, the uniform strategy needs (of order of) K / Δ^{2} rounds to have a small regret. Can we do better ?
Assume that there exists a unique optimal arm i^{*}, then we have strategies that require only $H=\sum_{i \neq i^{*}} 1 / \Delta_{i}^{2}$ rounds to have a small regret.

The smaller R_{n} the larger r_{n} !

Theorem

Consider any strategy and let $\epsilon: \mathbb{N} \rightarrow \mathbb{R}$ be such that for all (Bernoulli) distributions ν_{1}, \ldots, ν_{K} on the rewards, we have

$$
R_{n} \leq c \epsilon(n),
$$

then for all sets of $K \geq 3$ (distinct, Bernoulli) distributions on the rewards, all different from a Dirac distribution at 1, up to a permutation of the arms we have,

$$
r_{n} \geq \Delta \exp (-c \epsilon(n))
$$

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}

Theonem

SR satisfies (for well chosen $\left(n_{k}\right)$)

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}

Theonem

SR satisfies (for well chosen $\left(n_{k}\right)$)

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}

Theorem

SR satisfies (for well chosen (n_{k}))

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the
smallest empirical mean.
Let I_{n} be the unique element of A_{k}

Theorem

SR satisfies (for well chosen (n_{k}))

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}
Theorem
SR satisfies (for well chosen (n_{k}))

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}.
Theorem
$S R$ satisfies (for well chosen $\left(n_{k}\right)$):

Successive Rejects (SR)

Let $A_{1}=\{1, \ldots, K\}$.
For each phase $k=1,2, \ldots, K-1$:
(1) For each $i \in A_{k}$, select arm i during n_{k} rounds.
(2) Let $A_{k+1}=A_{k} \backslash\{j\}$, where j is the arm in A_{k} with the smallest empirical mean.

Let J_{n} be the unique element of A_{K}.

Theorem

$S R$ satisfies (for well chosen $\left(n_{k}\right)$):

$$
r_{n} \leq K^{2} \exp \left(-c \frac{n}{\log (K) H}\right)
$$

Lower bound

Theorem

Let ν_{1}, \ldots, ν_{K} be Bernoulli distributions with parameters in $[1 / 3,2 / 3]$ (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$
r_{n} \geq \Delta \exp \left(-c \frac{n \log (K)}{H}\right)
$$

Informally, any algorithm requires at least (of order of) $H / \log (K)$ rounds to have a small regret (and recall that SR has a small regret with $\log (K) H$ rounds)

Lower bound

Theorem

Let ν_{1}, \ldots, ν_{K} be Bernoulli distributions with parameters in $[1 / 3,2 / 3]$ (and a unique optimal arm). Then, for any strategy, up to a permutation of the arms,

$$
r_{n} \geq \Delta \exp \left(-c \frac{n \log (K)}{H}\right)
$$

Informally, any algorithm requires at least (of order of) $H / \log (K)$ rounds to have a small regret (and recall that SR has a small regret with $\log (K) H$ rounds).

\mathcal{X}-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X}.

Theorem
Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

Can we avoid the exponential dependence on the dimension ?

\mathcal{X}-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X}.

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$
\inf _{\text {player's strategy }} \sup _{\mathcal{F}} R_{n}=\tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right) \text {. }
$$

[^0]
\mathcal{X}-armed bandit game, joint work with Rémi Munos, Gilles Stoltz and Csaba Szepesvari

Classical bandit game where the set of arms $\{1, \ldots, K\}$ is replaced by an arbitrary set \mathcal{X}.

Theorem

Let \mathcal{X} be a compact subset of \mathbb{R}^{D} and \mathcal{F} be the set of bandits problems such that the mean-payoff function is 1-Lipschitz (with respect to some norm). Then we have

$$
\inf _{\text {player's strategy }} \sup _{\mathcal{F}} R_{n}=\tilde{\Theta}\left(n^{\frac{D+1}{D+2}}\right) \text {. }
$$

Can we avoid the exponential dependence on the dimension ?

Near-optimality dimension

Let ℓ be a dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^{2} \rightarrow \mathbb{R}$ satisfying $\ell(x, x)=0$.

Example

Near-optimality dimension

Let ℓ be a dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^{2} \rightarrow \mathbb{R}$ satisfying $\ell(x, x)=0$.

Definition

Let $f: \mathcal{X} \rightarrow[0,1], \mathcal{X}_{\epsilon}=\{x \in \mathcal{X}, \sup f-f(x) \leq \epsilon\}$ and $\mathcal{P}\left(\mathcal{X}_{\epsilon}, \ell, \epsilon\right)$ be the packing number of \mathcal{X} with ℓ-open balls of radius ϵ. The near-optimality dimension of f is defined as
$d(f)=\lim \sup _{\epsilon \rightarrow 0} \frac{\log \mathcal{P}\left(\mathcal{X}_{\epsilon} \ell, \epsilon\right)}{\log \epsilon^{-1}}$.

Near-optimality dimension

Let ℓ be a dissimilarity measure, that is, a non-negative mapping $\ell: \mathcal{X}^{2} \rightarrow \mathbb{R}$ satisfying $\ell(x, x)=0$.

Definition

Let $f: \mathcal{X} \rightarrow[0,1], \mathcal{X}_{\epsilon}=\{x \in \mathcal{X}, \sup f-f(x) \leq \epsilon\}$ and $\mathcal{P}\left(\mathcal{X}_{\epsilon}, \ell, \epsilon\right)$ be the packing number of \mathcal{X} with ℓ-open balls of radius ϵ. The near-optimality dimension of f is defined as
$d(f)=\lim \sup _{\epsilon \rightarrow 0} \frac{\log \mathcal{P}\left(\mathcal{X}_{\epsilon}, \ell, \epsilon\right)}{\log \epsilon^{-1}}$.

Example

Let $\mathcal{X}=[0,1]^{D}$ and ℓ be some norm $\|\cdot\|$. Then $f(x)=\|x\|$ satisfies $d(f)=0$ and $g(x)=\|x\|^{2}$ satisfies $d(g)=D / 2$.

Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then the Zooming algorithm satisfies $R_{n}=\tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

[^1]
Regret bounds with near-optimality dimension

Theorem (Kleinberg, Slivkins, and Upfal (2008))

Let \mathcal{X} be a compact metric space (with metric ℓ). Consider a bandit problem such that the mean-payoff is 1-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then the Zooming algorithm satisfies $R_{n}=\tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Theorem

Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then HOO satisfies (under mild 'compactness' assumption on $\mathcal{X}) R_{n}=\tilde{O}\left(n^{\frac{d+1}{d+2}}\right)$.

Example

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO using

Example

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO using $\ell(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha . R_{n}=O(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated:
\square
- Smoothness overestimated: $\beta>\alpha$. No guarantee. Note: UCT corresponds to

Example

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO using $\ell(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: where $d=D$
- Smoothness overestimated: $\rho>$. No guarantee. Note: UCT corresponds to

Example

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO using $\ell(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta<\alpha$.

$$
R_{n}=\tilde{O}\left(n^{(d+1) /(d+2)}\right) \text { where } d=D\left(\frac{1}{\beta}-\frac{1}{\alpha}\right) \text {. }
$$

- Smoothness overestimated:

Example

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO using $\ell(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta<\alpha$.

$$
R_{n}=\tilde{O}\left(n^{(d+1) /(d+2)}\right) \text { where } d=D\left(\frac{1}{\beta}-\frac{1}{\alpha}\right)
$$

- Smoothness overestimated: $\beta>\alpha$. No guarantee. Note: UCT corresponds to $\beta=+\infty$.

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a gain vector
(3) The player receives (and observes) the gain $g_{t, t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a gain vector
(3) The player receives (and observes) the gain g_{t}, t

Goal: Maximize the cumulative gains obtained. We consider the regret:

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a gain vector $g_{t}=\left(g_{1, t}, \ldots, g_{K, t}\right) \in[0,1]^{K}$.
(3) The player receives (and observes) the gain $g_{t, t}$.

Goal: Maximize the cumulative gains obtained. We consider the
regret:

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a gain vector $g_{t}=\left(g_{1, t}, \ldots, g_{K, t}\right) \in[0,1]^{K}$.
(3) The player receives (and observes) the gain $g_{I_{t}, t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

Adversarial multi-armed bandit game, joint work with Jean-Yves Audibert

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, K\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a gain vector

$$
g_{t}=\left(g_{1, t}, \ldots, g_{K, t}\right) \in[0,1]^{K}
$$

(3) The player receives (and observes) the gain $g_{I_{t}, t}$.

Goal: Maximize the cumulative gains obtained. We consider the regret:

$$
R_{n}=\max _{i=1, \ldots, K} \mathbb{E} \sum_{t=1}^{n} g_{i, t}-\mathbb{E} \sum_{t=1}^{n} g_{l_{t}, t}
$$

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$
\sup R_{n} \geq \frac{1}{20} \sqrt{n K}
$$

Moreover Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

We propose a new strategy, INF, which satisfies $R_{n} \leq 8 \sqrt{n K}$.

Due to time constraints, we skip all the interesting extensions:
label efficient games, high probability bounds, tracking the best
expert bounds, bounds that scale with the optimal arm rewards.

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$
\sup R_{n} \geq \frac{1}{20} \sqrt{n K}
$$

Moreover Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

We propose a new strategy, INF, which satisfies $R_{n} \leq 8 \sqrt{n K}$.

Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.

Known results

Theorem (Auer, Cesa-Bianchi, Freund, and Schapire (1995))

For any strategy,

$$
\sup R_{n} \geq \frac{1}{20} \sqrt{n K}
$$

Moreover Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n K \log K}
$$

We propose a new strategy, INF, which satisfies $R_{n} \leq 8 \sqrt{n K}$.
Due to time constraints, we skip all the interesting extensions: label efficient games, high probability bounds, tracking the best expert bounds, bounds that scale with the optimal arm rewards.

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over

For each round
(2) Compute
a Compute the new probability distribution where C_{t} is the unique real number such that

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over $\{1, \ldots, K\}$.
For each round $t=1,2, \ldots, n$;
(2) Compute
a Compute the new probability distribution
where C_{t} is the unique real number such that

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over $\{1, \ldots, K\}$.
For each round $t=1,2, \ldots, n$;
(2) Compute $\tilde{g}_{i, t}=\frac{g_{i, t}}{p_{i, t}} \mathbb{1}_{l_{t}=i}$ and $\tilde{G}_{i, t}=\sum_{s=1}^{t} \tilde{g}_{i, s}$.
(3) Compute the new probability distribution:
where C_{t} is the unique real number such that

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over $\{1, \ldots, K\}$.
For each round $t=1,2, \ldots, n$;
(1) $I_{t} \sim p_{t}$.
(3) Compute
(3) Compute the new probability distribution:
where C_{t} is the unique real number such that

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over $\{1, \ldots, K\}$.
For each round $t=1,2, \ldots, n$;
(1) $I_{t} \sim p_{t}$.
(2) Compute $\tilde{g}_{i, t}=\frac{g_{i, t}}{p_{i, t}} \mathbb{1}_{l_{t}=i}$ and $\tilde{G}_{i, t}=\sum_{s=1}^{t} \tilde{g}_{i, s}$.
(3) Compute the new probability distribution:
where C_{t} is the unique real number such that

INF (Implicitly Normalized Forecaster)

Parameter: function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.

Let p_{1} be the uniform distribution over $\{1, \ldots, K\}$.
For each round $t=1,2, \ldots, n$;
(1) $I_{t} \sim p_{t}$.
(2) Compute $\tilde{g}_{i, t}=\frac{g_{i, t}}{p_{i, t}} \mathbb{1}_{t=i}$ and $\tilde{G}_{i, t}=\sum_{s=1}^{t} \tilde{g}_{i, s}$.

- Compute the new probability distribution:

$$
p_{i, t+1}=\psi\left(\tilde{G}_{i, t}-C_{t}\right)
$$

where C_{t} is the unique real number such that $\sum_{i=1}^{K} p_{i, t+1}=1$.

Examples

(1) $\psi(x)=\exp (\eta x)+\frac{\gamma}{K}$ with $\eta>0$ and $\gamma \in[0,1)$; this corresponds exactly to the Exp3 strategy.

Examples

(1) $\psi(x)=\exp (\eta x)+\frac{\gamma}{K}$ with $\eta>0$ and $\gamma \in[0,1)$; this corresponds exactly to the Exp3 strategy.
(2) $\psi(x)=\left(\frac{\eta}{-x}\right)^{q}+\frac{\gamma}{K}$ with $q>1, \eta>0$ and $\gamma \in[0,1)$; this is a new strategy which will be proved to be minimax optimal for appropriate parameters.

Regret bound for Poly INF

Theorem

Consider $\psi(x)=\left(\frac{\eta}{-x}\right)^{q}+\frac{\gamma}{K}$ with $\gamma=\min \left(\frac{1}{2}, \sqrt{\frac{3 K}{n}}\right), \eta=\sqrt{5 n}$ and $q=2$. Then INF satisfies:

$$
R_{n} \leq 8 \sqrt{n K}
$$

Proof

By an Abel transform we shift the focus from:

$$
\sum_{t=1}^{n} g_{l_{t}, t}=\sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}\left(\tilde{G}_{i, t}-\tilde{G}_{i, t-1}\right)
$$

to

Then a Taylor expansion gives us:

Proof

By an Abel transform we shift the focus from:

$$
\sum_{t=1}^{n} g_{l_{t}, t}=\sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}\left(\tilde{G}_{i, t}-\tilde{G}_{i, t-1}\right)
$$

to

$$
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i, t}\left(p_{i, t+1}-p_{i, t}\right)=\sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}\left(p_{i, t+1}\right)\left(p_{i, t+1}-p_{i, t}\right)
$$

Then a Taylor expansion gives us:

The first resulting term: $-\sum_{i=1}^{K} \int_{D_{i}}^{1 / K} \psi^{-1}(u) d u$ is easy to

Proof

By an Abel transform we shift the focus from:

$$
\sum_{t=1}^{n} g_{t, t}=\sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}\left(\tilde{G}_{i, t}-\tilde{G}_{i, t-1}\right)
$$

to

$$
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i, t}\left(p_{i, t+1}-p_{i, t}\right)=\sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}\left(p_{i, t+1}\right)\left(p_{i, t+1}-p_{i, t}\right)
$$

Then a Taylor expansion gives us:
$\left(p_{i, t+1}-p_{i, t}\right) \psi^{-1}\left(p_{i, t+1}\right)=-\int_{p_{i, t+1}}^{p_{i, t}} \psi^{-1}(u) d u+\frac{\left(p_{i, t}-p_{i, t+1}\right)^{2}}{2 \psi^{\prime}\left(\psi^{-1}\left(\tilde{p}_{i, t+1}\right)\right)}$.

Proof

By an Abel transform we shift the focus from:

$$
\sum_{t=1}^{n} g_{l_{t}, t}=\sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}\left(\tilde{G}_{i, t}-\tilde{G}_{i, t-1}\right)
$$

to

$$
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i, t}\left(p_{i, t+1}-p_{i, t}\right)=\sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}\left(p_{i, t+1}\right)\left(p_{i, t+1}-p_{i, t}\right)
$$

Then a Taylor expansion gives us:
$\left(p_{i, t+1}-p_{i, t}\right) \psi^{-1}\left(p_{i, t+1}\right)=-\int_{p_{i, t+1}}^{p_{i, t}} \psi^{-1}(u) d u+\frac{\left(p_{i, t}-p_{i, t+1}\right)^{2}}{2 \psi^{\prime}\left(\psi^{-1}\left(\tilde{p}_{i, t+1}\right)\right)}$.
The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i, n+1}}^{1 / K} \psi^{-1}(u) d u$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

Proof

By an Abel transform we shift the focus from:

$$
\sum_{t=1}^{n} g_{t}, t=\sum_{t=1}^{n} \sum_{i=1}^{K} p_{i, t}\left(\tilde{G}_{i, t}-\tilde{G}_{i, t-1}\right)
$$

to

$$
\sum_{t=1}^{n-1} \sum_{i=1}^{K} \tilde{G}_{i, t}\left(p_{i, t+1}-p_{i, t}\right)=\sum_{i=1}^{K} \sum_{t=1}^{n-1} \psi^{-1}\left(p_{i, t+1}\right)\left(p_{i, t+1}-p_{i, t}\right) .
$$

Then a Taylor expansion gives us:
$\left(p_{i, t+1}-p_{i, t}\right) \psi^{-1}\left(p_{i, t+1}\right)=-\int_{p_{i, t+1}}^{p_{i, t}} \psi^{-1}(u) d u+\frac{\left(p_{i, t}-p_{i, t+1}\right)^{2}}{2 \psi^{\prime}\left(\psi^{-1}\left(\tilde{p}_{i, t+1}\right)\right)}$.
The first resulting term: $-\sum_{i=1}^{K} \int_{p_{i, n+1}}^{1 / K} \psi^{-1}(u) d u$ is easy to control. On the other hand for the second term we need to do a multivariate Taylor expansion on

$$
p_{i, t}-p_{i, t+1}=\psi\left(\tilde{G}_{i, t}-C_{t}\right)-\psi\left(\tilde{G}_{i, t+1}-C_{t+1}\right)
$$

as well as a careful treatment of the "shift" introduced by $\tilde{p}_{i, t+1}$.

Perspectives

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

Perspectives

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

Perspectives

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.

Perspectives

The possible extensions of classical bandits games are almost unlimited. The following cases are of special interest (to me).

- Exploiting the combinatorial structure in linear bandits.
- Specific forms of dependency between the arms for stochastic bandits.
- Mortal bandits: set of arms varying over time.
H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Mathematics Society, 1952.
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: the adversarial multi-armed bandit problem. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, 1995.
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning Journal, 2002.
R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings of the 40th ACM Symposium on Theory of Computing, 2008.
J.-Y. Audibert, R. Munos, and Cs. Szepesvári.

Exploration-exploitation trade-off using variance estimates in multi-armed bandits. Theoretical Computer Science, 2009.
S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvari. Online optimization in \mathcal{X}-armed bandits. In Advances in Neural Information Processing Systems (NIPS) 22, 2009.
J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic bandits. In Proc. of the 22nd annual conference on learning theory (COLT), 2009.
S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. In Proc. of the 20th International Conference on Algorithmic Learning Theory (ALT), 2009.
J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In Proc. of the 23rd annual conference on learning theory (COLT), 2010.
S. Bubeck and R. Munos. Open loop optimistic planning. In 23rd annual conference on learning theory (COLT), 2010.

[^0]: Can we avoid the exponential dependence on the dimension ?

[^1]: Theorem
 Let ℓ be any dissimilarity and consider a bandit problem such that the mean-payoff is weakly-Lipschitz and has a near-optimality dimension $d \geq 0$ (with respect to ℓ). Then HOO satisfies (under mild 'compactness' assumption on

