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Some Applications
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A little bit of advertising

Survey on multi-armed bandits to appear in

[ S. Bubeck and N. Cesa-Bianchi.
Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems.
To appear in Foundations and Trends in Machine Learning,
2012. (Draft available on my webpage.)



For each round t =1,2,...,n;

@ The player chooses an arm I, € {1,..., d}, possibly with the
help of an external randomization.

@ Simultaneously the adversary chooses a loss vector

© The player incurs the loss /;

t

, and observes:

Goal: Minimize the cumulative loss incured. We consider the
regret:
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Notation

For each round t =1,2,...,n;

© The player chooses an arm I € {1,...,d}, possibly with the
help of an external randomization.

@ Simultaneously the adversary chooses a loss vector
gt — (E]_’t, “e e 7€d,t) E [0/ 1]d

© The player incurs the loss /), ;, and observes:

o The loss vector /; in the full information setting.
e Only the loss incured 7, ; in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the

regret:
R,=E ;flt,t - l'—T,i?,dE; it
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Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw /; at random from p; where

exp (~n ¢ i)
Sfyexp (<13 b

pe(i) =

Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire

and Warmuth [1997])

Exp satisfies

Moreover for any strategy,

log d
sup  Rp >4/ Er o(+/nlogd).
adversaries 2
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The one-slide-proof
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Magic trick for bandit feedback

is an unbiased estimate of /; ;. We call Exp3 the Exp strategy run
on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])

Exp3 satisfies:
R, < v/2ndlogd.

Moreover for any strategy,

1
sup R, > Zl\/ nd + o(V nd).

adversaries
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High probability bounds

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])

Let 6 € (0,1), with g = % —0.95 logd and

dlogd e - _
v = 1.054/ 582, Exp3.P satisfies with probability at least 1 — §:

.....

On the other hand with § = =0.95/ =& 4 and

~v = 1.054/ d";gd, Exp3.P satisfies, for any ¢ € (0,1), with
probability at least 1 — §:

Zglt,t — . min Zel t < \/7|og 671) +5.15y/nd log d.
t=1 =
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Other types of normalization

@ INF (Implicitly Normalized Forecaster) is based on a potential
function ¢y : R* — R" increasing, convex, twice continuously
differentiable, and such that (0,1] C ¥ (R*).

@ At each time step INF computes the new probability
distribution as follows:

t—1
i) = (ct - y) ,
s=1

where C; is the unique real number such that ij:l p:(i) = 1.
@ 1(x) = exp(1x) +  corresponds exactly to the Exp3 strategy.

o Y(x) = (—nx)"2+ = is the quadratic INF strategy.



Minimax optimal regret bound

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck

[2010], Audibert, Bubeck and Lugosi [2011])
Quadratic INF satisfies:

R, <2v2nd.




Extension: partial monitoring

@ Partial monitoring: the received feedback at time t is some
signal S(/¢, /), see Cesa-Bianchi and Lugosi [2006].



Extension: partial monitoring

@ Partial monitoring: the received feedback at time t is some
signal S(/¢, (), see Cesa-Bianchi and Lugosi [2006].

@ A simple interpolation between full info. and bandit feedback
is the partial monitoring setting of Mannor and Shamir [2011]:
S(le, 0¢) = {li+, i € N(lt)} where
N :A{1,...,d} = P({1,...,d}) is some known
neighboorhood mapping.



Extension: partial monitoring

@ Partial monitoring: the received feedback at time t is some
signal S(/¢, (), see Cesa-Bianchi and Lugosi [2006].

@ A simple interpolation between full info. and bandit feedback
is the partial monitoring setting of Mannor and Shamir [2011]:
S(le, 0¢) = {li+, i € N(lt)} where
N :A{1,...,d} = P({1,...,d}) is some known
neighboorhood mapping. A natural loss estimate in that case

IS
- Lidlien)

iy = =———"+=.
' Zje\/(i) pe(J)
Mannor and Shamir [2011] proved that Exp with the above

estimate has a regret of order /an where « is the
independence number of the graph associated to .



Extension: contextual bandits
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Extension: contextual bandits

o Contextual bandits: at each time step t one receives a context
s € S, and one wants to perform as well as the best mapping
from contexts to arms:

R;SZE ft o min E l St),t*
tZ; o g:8—{1,..,d} ; g(st),t

@ A related problem is bandit with experts advice: N experts are
playing the game, and the player observes their actions ¢,

k=1,...,N. One wants to compete with the best expert:
n n
RY=E> l— ke{TT,N}EZQ“'
t=1 t=1
With the bandit feedback ¢, ; one can build an estimate for
the loss of expert k as /K = %. Playing Exp on the set

of experts with the above loss estimate yields

RN < \/2ndlog N.
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Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses ((+)1<+<n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

o Let v; be the unknown reward distribution underlying arm i,
(1t the mean of v, p* = maxi<j<q pj and A; = p* — pu;.

o Let X ~ v; be the reward obtained when pulling arm i for
the st time, and T;(t) = Y.t 1,_; the number of times
arm i was pulled up to time t.

@ Thus here

n d
R,, = n/f — Ezult = ZA,‘ET{(H).
i=1

t=1



Optimism in face of uncertainty

General principle: given some observations from an unknown
environment, build (with some probabilistic argument) a set of
possible environments €2, then act as if the real environment was
the most favorable one in €.



Optimism in face of uncertainty

General principle: given some observations from an unknown
environment, build (with some probabilistic argument) a set of
possible environments €2, then act as if the real environment was
the most favorable one in €.

Application to stochastic bandits: given the past rewards, build
confidence intervals for the means (y;) (in particular build upper
confidence bounds), then play the arm with the highest upper
confidence bound.



UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X1,...,X; be i.i.d random variables in [0, 1], then with
probability at least 1 — 6,

log —1
2t

1 t
EXS?Elxs'i'
s=
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UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X1,...,X; be i.i.d random variables in [0, 1], then with
probability at least 1 — 6,

log —1
2t

1 t
EXg;X}X#
s=

This directly suggests the famous UCB strategy of Auer,
Cesa-Bianchi and Fischer [2002]:

1 ey 2log t

g
Iy € argmax —— Xis+ | =———.
' éigd Ti(t—1) ; o Ti(t—1)
Auer et al. proved the following regret bound:

R < Z 10|o.gn.
i:A;>0 !
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MOSS (Minimax Optimal Stochastic Strategy)

In a distribution-free sense one can show that UCB has a regret

always bounded as R, < cy/nd log n. Furthermore one can prove
that for any strategy there exists a set of distributions such that

R, > 55v/nd. To close this gap Audibert and Bubeck (2009)
introduced MOSS:

-1 max(log (ﬁ) ./0) |

It = argmax —— Xis +
‘ ie{l,.. d}T Z ° Ti(t—1)

One can show that MOSS satisfies:

R, < c% log(n), and R, < ¢V nd.
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For any p,q € [0,1], let

p 1-
kl(p,q)=plog5+(1—P)|0g17

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. Ya > 0, we have
ET;i(n) = o(n?) if A; > 0. Then for any Bernoulli reward
distributions,

i f
lim inf ognf Z k1 s

Note that

LY s VI [ C ).
20; — kl(,u,-,u*) - 20;



KL-UCB

Theorem (Chernoff's inequality)

Let X, X1,...,X; be i.i.d random variables in [0, 1], then

t
P (% > X <EX - e) < exp (—t KI(EX — ¢, EX)).

s=1




KL-UCB

Theorem (Chernoff's inequality)

Let X, X1,...,X; be i.i.d random variables in [0, 1], then

t
P (% > X <EX - e) < exp (—t KI(EX — ¢, EX)).

s=1

In particular this implies that with probability at least 1 — 4:

i log 61
EX < 0,1]: kI { =) X < .
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KL-UCB

Theorem (Chernoff’s inequality)

Let X, Xi,..., Xt be i.i.d random variables in [0,1], then

t
P <% > X <EX - e) < exp (—t KI(EX — ¢, EX)).

s=1

In particular this implies that with probability at least 1 — ¢:

Exgmax{qe[o,l]:m( ZXS, >_'°g5 1}.




KL-UCB

Thus Chernoff’'s bound suggests the KL-UCB strategy of Garivier
and Cappé [2011] (see also Honda and Takemura [2010], Maillard,
Munos and Stoltz [2011]) :
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KL-UCB

Thus Chernoff’'s bound suggests the KL-UCB strategy of Garivier
and Cappé [2011] (see also Honda and Takemura [2010], Maillard,
Munos and Stoltz [2011]) :

l; € argmax max {q € [0,1]:
1<i<d

-1)
(1+¢€)logt
kl g X; < —— .
t—l e | = TKtl)}

Garivier and Cappé proved the following regret bound for n large
enough:

A,
R, < E: +2€—————fbgn
i:A;>0 )
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A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the
case of Bernoulli distributions:

@ Assume a uniform prior on the parameters p; € [0, 1].

@ Let 7, ; be the posterior distribution for y; at the tt" round.

o Let 0+ ~ 7+ (independently from the past given 7; ;).

.....

The first theoretical guarantee for this strategy was provided in
Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos
[2012] it was proved that it attains essentially the same regret than
KL-UCB.
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Heavy-tailed distributions

The standard UCB works for all o2 - subgaussian distributions (not
only bounded distributions), i.e. such that

242
Eexp (A(X — EX)) < Z

, VA e R.

It is easy to see that this is equivalent to
Ja > 0s.t. Eexp(aX?) < +oo.

What happens for distributions with heavier tails? Can we get
logarithmic regret if the distributions only have a finite variance?
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Median of means, Alon, Gibbons, Matias and Szegedy
[2002]

Lemma

Let X, X1,...,X, be i.i.d random variables such that
E(X —EX)?<1. Let 6 € (0,1), k =8logd~ ! and N =
Then with probability at least 1 — 6,

__n__
8logd—1-

kN

N
. 1 1
median N E Xs,...,N E Xs
s=1 s=(k—1)N+1




Median of means, Alon, Gibbons, Matias and Szegedy
[2002]

Lemma

Let X, X1,...,X, be i.i.d random variables such that
E(X —EX)?<1. Let 6 € (0,1), k =8logd~ ! and N = Slogs—T-
Then with probability at least 1 — 6,

1Y 1 X 8log(6~1)
EX < median NZXS’“"N Z Xs | +8 .
s=1 s=(k—1)N+1




Robust UCB

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and
Lugosi [2012]:

Ni, e ke Nj ¢
: 1 :
It € argmax median _ Z Xisyens v Z Xis
1<i<d (L — it s=(ke—)N; (+1
logt
32| =———
AT
Ti(t-1)

with k; = 16logt and N;; = T6logt



Robust UCB

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and
Lugosi [2012]:

N/ t ktNi t
1 :
Is € argmax median | — Z P Z Xi s
lsizd hts=1 P = (ke—1)N; 141
logt
32 | ———,
AT
with k; = 16log t and N;; = -’1—"6(|to_glt). The following regret bound

can be proved for any set of distributions with variance bounded by

1:
log n
R, <c Z A
i:A;>0
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Markovian rewards

The sequence (X; +)¢>1 forms an aperiodic irreducible finite-state
Markov chain with unknown transition matrix P;.

Again in this framework it is possible to design a UCB strategy
with logarithmic regret (Tekin and Liu, [2011]), using the following
result:

Theorem (Lezaud [1998])

Let X1,...,X: be an aperiodic irreducible finite-state Markov chain
with transition matrix P. Let \, be the second largest eigenvalue
of the multiplicative symmetrization of P and e =1 — \,. Let i be
the expectation of Xy under the stationary distribution. There
exists C > 0 such that for any y € (0, 1],

1< ty2e
P(t;st,u—Fv) SCexp<— >3 )
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Online Lipschitz and Stochastic Optimization

Stochastic multi-armed bandit where {1,..., K} is replaced by X
At time t, select x; € X, then receive a random variable r; € [0, 1]
such that E[r|x:| = f(x¢).

X is equipped with a symmetric function p : X x X — R such
that p(x,x) = 0. f is Lipschitz with respect to p, that is

[£(x) = F(W) < p(x,¥), Vx,y € X.

Ro=nf*—E) f(x),
t=1

where f* = sup, .y f(x).






Where should one sample next?

X
X "
XI/' \‘ /
X ;X
\\X 5 ‘ /
X 'x >S<XX
-+—+++—t+——H+—+++——=
I,

How to define a high probability upper bound at any state x?



Noiseless case, r; = f(x;)

S
fcd | e
1
]
Xt

Lipschitz property — the evaluation of f at x; provides a first
upper-bound on f.



New point — refined upper-bound on f.






El



UCB in a given domain

oo X )
o N . ‘x X
X
X;
1
1

LI

x

For a fixed domain X; 3 x containing n; points {x;} € X;, we have

that 7", re — f(x¢) is a martingale.



UCB in a given domain

X [ ]
\\'>.<.f/x
X
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UCB in a given domain

X [ ]
\.>.<.*><
X

For a fixed domain X; 3 x containing n; points {x;} € X;, we have
that 7", re — f(x¢) is a martingale. Thus by Azuma'’s inequality,

72 Iog1/5 > lzf(xt > f(x) — diam(X;),

since f is Lipschitz (where diam(X;) = sup, ,ex, p(x,y))



High probability upper bound

Upper-bound ,

A o
I
| diam(X;) /) .
I
I

<

i
;) [Jlog1/s
4 2n,

\ I £
X
\ 4 I

N _X__/)(_V 1 i

X n DT

X

X
l l

w.p. 1 -9,

*Z

Iog 1/ + diam(X;) > sup f(x).
x€X;



High probability upper bound

Upper-bound /\\\
A P
- I " \
P :diam(Xl) ) |
// \\ v /’ N
// \\ /I‘ \
S \ N ;) [Jlog1/s
\ . \ X S 2ni
> % t=1"t
X
X
1-U |
LILL |
Iog 1/6 .
w.p. 1—90, — E / + diam(X;) > sup f(x).

x€X;

Tradeoff between number of points in a domain and size of the domain.



High probability upper bound

Upper-bound A
)
7N ! ! \
SN | diam(X;) ) |
// \\ v /’ N
// ‘\ 71\ \
/ : -~ S ege
\\ PN , \ X S 2n;
3~ -7 %Zf:l’rt
X
X
1 U 1
LILLI |
0
1 « log1/d )
re + / + diam(X;) > sup f(x).
2n; xEX;

w.p. 1 -9, —
n;
t=1
Tradeoff between number of points in a domain and size of the domain
By considering several domains we can derive a tigther upper bound.



A hierarchical decomposition

Use a tree of partitions at all scales:

v S v

Bi(t) % min {ﬁ;(t) L Ploelt) diam(i), max Bj(r)}

Ti(t) jec(i)



Hierarchical Optimistic Optimization (HOO)

[Bubeck, Munos, Stoltz, Szepesvari, 2008, 2011]: Consider a tree
of partitions of X, each node i corresponds to a subdomain X;.

HOO Algorithm:
Let 7; be the set of expanded tuncd-on
nodes at round t. " LAVES Bz
- T1 = {root} (space X)

- At t, select a leaf I; of T; by
maximizing the B-values,

- Tev1 = Te U{l}

- Select x; € X,

- Observe reward r; and update

the B-values:

d path

2log(t) (i
Ti(t) jec(i)

Bi(t) ' min [ (1) +



Example in 1d

re ~ B(f(x¢)) a Bernoulli distribution with parameter f(x;)

Resulting tree at time n = 1000 and at n = 10000.

SRR




The near-optimality dimension d of f is defined as follows: = =

X Y ixe X flx)>f —e

be the set of . Then can be by

balls of radius e. A similar notion was introduced in [Kleinberg,
Slivkins, Upfal, 2008].
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Analysis of HOO

The near-optimality dimension d of f is defined as follows: Let

X Y xe X fx)>f—¢)
be the set of e-optimal points. Then X, can be covered by O(¢~9)

balls of radius e. A similar notion was introduced in [Kleinberg,
Slivkins, Upfal, 2008].

Theorem (Bubeck, Munos, Stoltz, Szepesvari, 2008)

HOO satisfies:

= d+1

R, = O(nd+2).
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It takes O(c?) balls of radius € to cover X, with p(x,y) = ||x — y]].
Thus d = 0 and the regret is O(+/n).



Example 2:

Assume the function is locally quadratic around its maximum:

F(x*) = f(x) = ©(/[x" — x|I*).




Example 2:

Assume the function is locally quadratic around its maximum:

F(x*) = f(x) = ©(/[x" — x|I*).

1%1

e For p(x,y) = |[x — v, it takes O(e~P/?) balls of radius € to
cover X.. Thus d = D/2 and R, = O(n5+).



Example 2:

Assume the function is locally quadratic around its maximum:

F(x") = F(x) = O(Ilx" — xII*).

1%1

e For p(x,y) = |[x — v, it takes O(e~P/?) balls of radius € to
cover X.. Thus d = D/2 and R, = O(n5+).
e For p(x,y) = |[x — y||?, it takes O(€®) p-balls of radius € to

cover X.. Thus d =0 and R, = O(\/n).
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Example

X =[0,1]P, a > 0 and mean-payoff function  locally " a-smooth”
around (any of) its maximum x* (in finite number):

f(x*) — f(x) = O(||x — x*||¥) as x — x*.

Theorem

Assume that we run HOO using p(x,y) = ||x — y||°.

o Known smoothness: = a. R, = O(y/n), i.e., the rate is
independent of the dimension D.

@ Smoothness underestimated: § < a.

Ry = B(n(#+1/(@42)) where d = D (% - é),

@ Smoothness overestimated: [ > a. No guarantee. Note:
UCT corresponds to [ = +oo0.
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Combinatorial prediction game

Full Info:
Adversary —— Feedback: Semi-Bandit:
Uy

loss suffered: ¢y + 67 + . ..

T T
E27£77‘”7£d

+ 4y



Combinatorial prediction game

Full Info: by, b, .. Ly
Adversary —— Feedback: Semi-Bandit: /5, 47,...,04
Bandit: by + 07+ ...+ Ly
Uy

loss suffered: ¢ + 47 + ...+ {4y




> s S C 0,1}

é ;1 - > s Vi €8, loss suffered: ] V;

Ry=EY [V, TJQEZMU
t=1 N t=1
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s Vi €8, loss suffered: (tTVf

Ry=BEY [V, TJEEZ(ZZU
t=1 N t=1



Rﬂ

s S 0,1}
s bp €RY

s Vi €S, loss suffered: é,_T Vi

Ei tT —mmEZ/tu
t=1



Notation

<§ > s S {0,1}4

AT N\ )

AN~ Et S R+

A . 3 ’u'v.«:

SOX s Vi €8, loss suffered: £] V;

Ry=EY ]V, LneigEZZtTu
t=1 t=1



Set of concepts S C {0,1}¢

Paths k-sets Matchings

Spanning trees

k-sized intervals Parallel bandits
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7 El,l
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Then, unbiased estimate #; of the loss /;:

° (Nt = /; in the game,
- li ¢

0 Vit = ——"t——x
i+ doves v,fipf(\/)

o [y = PF ViV l;, with P = Eyp, (VW) in the game.

Vit in the game,



Vi~ pe, pr € A(S)

Then, unbiased estimate #; of the loss /;:

e 7, = ¢, in the full information game,

o / .
bi} = —«————<V:,in the ame
It z\/iS V. |pf(\/) It g ’

lv = P ViV, with Py = By, (VW) in the game.



Key idea

Vi~ pt, pr € A(S)

Then, unbiased estimate #; of the loss /;:

o 0y = {; in the full information game,

o/ bt ) Vi ¢ in the semi-bandit game,

ht Z\/GS:V,-:I pt



Key idea

Vi~ pt, pr € A(S)

Then, unbiased estimate Et of the loss #;:

o 0y = {; in the full information game,

Joo— ity i i
° Ui+ = Svesvap(V) Vit in the semi-bandit game,

o [y = PF ViV, t;, with Py = Ey.p,(VVT) in the bandit game.
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Loss assumptions

Definition (L)
We say that the adversary satisfies the L., assumption: if
It]oo <1forallt=1,... n.

Definition (L2)
We say that the adversary satisfies the L, assumption: if /[ v <1
forallt=1,...,nand veS.




Expanded Exponentially weighted average forecaster
(Exp2)

exp (~n i1 V)
uesexp (~n i T u)

Pt(V) =



Expanded Exponentially weighted average forecaster
(Exp2)

exp (~n i1 V)
—1 7
SR ST

@ In the full information game, against L, adversaries, we have

(for some 1)
R, < V2dn,
which is the optimal rate, Dani, Hayes and Kakade [2008].

pe(v) =
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71 ~
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@ In the full information game, against L, adversaries, we have

(for some 1)
R, < V2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].
@ Thus against L., adversaries we have

R, < d*?v/2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

pe(v) =



Expanded Exponentially weighted average forecaster
(Exp2)

exp (~n i1 V)
uesexp (~n i T u)

@ In the full information game, against L, adversaries, we have

(for some 1)
R, < V2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].
@ Thus against L., adversaries we have

R, < d*?v/2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

@ Audibert, Bubeck and Lugosi [2011] showed that, for any 7,
there exists a subset S C {0,1}9 and an L., adversary such
that:

pe(v) =

R, > 0.02 d*/%\/n.
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Legendre function

Let D be a convex subset of R? with nonempty interior int(D) and
boundary 9D. We call Legendre any function F : D — R such that

@ F is strictly convex and admits continuous first partial
derivatives on int(D),

@ For any u € 9D, for any v € int(D), we have

lim (uv— v)TVF((l —s)u+sv) = +oo.

s—0,5>0




Bregman divergence

The Bregman divergence Df : D x int(D) associated to a
Legendre function F is defined by

De(u,v) = F(u) — F(v) — (u—v)TVF(v).

Definition

The Legendre transform of F is defined by

| A

F*(u) = sup x" u — F(x).
x€D

Key property for Legendre functions: VF* = (VF) L.
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Online Stochastic Mirror Descent _

Parameter: F Legendre on D O Conv(S)
(1) w,, €D:
Wiy = VF* (VF(w) — 7o)

(2) weg1 € argmin Dp(w, wy,q)
we Conv(S)

(3) pt41 € A(S) : w1 = Evp,, V



General regret bound for OSMD

If F admits a Hessian V2F always invertible then,

Ro S diamp,(S) + EY 0T (V2F(wy)) " Zr.
t=1
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Different instances of OSMD: LinExp (Entropy Function)

D=0, —|—oo)d, F(x) = 1 Z;j:l x; log x;

7

/\ Full Info: Exp
- Semi-Bandit=Bandit: Exp3

Auer et al. [2002]

Full Info: Component Hedge

: ; : Koolen, Warmuth and Kivinen [2010]
Semi-Bandit: MW

Kale, Reyzin and Schapire [2010]

Bandit: bad algorithm!



=[0,+00)4, F(x) =3¢, fo Y 1(s)ds

< > INF, Audibert and Bubeck [2009]
% - ; { LinExp
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Different instances of OSMD: LinINF (Exchangeable
Hessian)

D = [0, +00)?, F(x) = X0, Jo" v (s)ds

INF, Audibert and Bubeck [2009)]
- { (x) = exp(nx) : LinExp
(x) = (—nx)"9 g > 1: LinPoly



Different instances of OSMD: Follow the regularized leader

D = Conv(S), then
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Different instances of OSMD: Follow the regularized leader

D = Conv(S), then

t
Wiyl € argmin (Z Tw+ F(W)>

weD s=1

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]



Minimax regret for the full information game

Theorem (Koolen, Warmuth and Kivinen [2010])

In the full information game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S C {0,1}9 and any

L~.-adversary:
R, < dv2n.

Moreover for any strategy, there exists a subset S C {0,1}9 and
an L..-adversary such that:

R, > 0.008 dv/n.




Minimax regret for the semi-bandit game

Theorem (Audibert, Bubeck and Lugosi [2011])

In the semi-bandit game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S C {0,1}9 and any

L~.-adversary:
R, < dv2n.

Moreover for any strategy, there exists a subset S C {0,1}9 and
an L..-adversary such that:

R, > 0.008 dv/n.
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regret bound.



Minimax regret for the bandit game

For the bandit game the situation becomes trickier.
o First it appears necessary to add some sort of forced
exploration on S to control third order error terms in the
regret bound.

o Second, the control of the quadratic term 7] (V2F(w;))
is much more involved than previously.



John's distribution

Theorem (John's Theorem)

Let I C RY be a convex set. If the ellipsoid £ of minimal volume
enclosing IC is the unit ball in some norm derived from a scalar
product (-, -), then there exists M < d(d + 1)/2 + 1 contact points
U, ..., upy between £ and IC, and 11 € Ay (the simplex of
dimension M — 1), such that

M

X = dZu,-(x, up)ui,¥ x € R,
i=1




Minimax regret for the bandit game

Theorem (Audibert, Bubeck and Lugosi [2011], Bubeck,

Cesa-Bianchi and Kakade [2012])

In the bandit game, the Exp2 strategy with John's exploration
satisfies for any concept class S C {0,1}9 and any L..-adversary:

R, < 4d*/n,

and respectively R, < 4d+/n for an Ly-adversary.
Moreover for any strategy, there exists a subset S C {0,1}9 and
an L.-adversary such that:

R, > 0.01 d*/2\/n.

For L>-adversaries the lower bound is 0.05 min(n, dv/n).

<

Conjecture: for an L..-adversary the correct order of magnitude is
d3/2,/n and it can be attained with OSMD.
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