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Some Applications

Computer Go Brain computer interface Medical trials

Packets routing Ads placement Dynamic allocation



A little bit of advertising

Survey on multi-armed bandits to appear in

S. Bubeck and N. Cesa-Bianchi.
Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems.
To appear in Foundations and Trends in Machine Learning,
2012. (Draft available on my webpage.)



Notation

For each round t = 1, 2, . . . , n;

1 The player chooses an arm It ∈ {1, . . . , d}, possibly with the
help of an external randomization.

2 Simultaneously the adversary chooses a loss vector
`t = (`1,t , . . . , `d ,t) ∈ [0, 1]d .

3 The player incurs the loss `It ,t , and observes:

The loss vector `t in the full information setting.
Only the loss incured `It ,t in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the
regret:

Rn = E
n∑

t=1

`It ,t − min
i=1,...,d

E
n∑

t=1

`i ,t .
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Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw It at random from pt where

pt(i) =
exp

(
−η
∑t−1

s=1 `i ,s

)

∑d
j=1 exp

(
−η
∑t−1

s=1 `j ,s

)

Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire
and Warmuth [1997])

Exp satisfies

Rn ≤
√

n log d

2
.

Moreover for any strategy,

sup
adversaries

Rn ≥
√

n log d

2
+ o(

√
n log d).
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The one-slide-proof

wt(i) = exp

(
−η

t−1∑

s=1

`i ,s

)
, Wt =

d∑

i=1

wt(i), pt(i) =
wt(i)

Wt

log
Wn+1

W1
= log

(
1

d

d∑

i=1

wn+1(i)

)
≥ log

(
1

d
max

i
wn+1(i)

)

= −ηmin
i

n∑

t=1

`i ,t − log d

log
Wn+1

W1
=

n∑

t=1

log
Wt+1

Wt
=

n∑

t=1

log

(
d∑

i=1

wt(i)

Wt
exp(−η`i ,t)

)

=
n∑

t=1

log (E exp(−η`It ,t )

≤
n∑

t=1

(
−ηE`It ,t +

η2

8

)
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Magic trick for bandit feedback

˜̀
i ,t =

`i ,t
pt(i)

1It=i ,

is an unbiased estimate of `i ,t . We call Exp3 the Exp strategy run
on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])

Exp3 satisfies:
Rn ≤

√
2nd log d .

Moreover for any strategy,

sup
adversaries

Rn ≥
1

4

√
nd + o(

√
nd).
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High probability bounds

What about bounds directly on the true regret

n∑

t=1

`It ,t − min
i=1,...,d

n∑

t=1

`i ,t ?

Auer et al. [2003] proposed Exp3.P:

pt(i) = (1− γ)
exp

(
−η
∑t−1

s=1
˜̀
i ,s

)

∑d
j=1 exp

(
−η
∑t−1

s=1
˜̀
j ,s

) +
γ

d
,

where
˜̀
i ,t =

`i ,t
pt(i)

1It=i +
β

pt(i)
.
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High probability bounds

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])

Let δ ∈ (0, 1), with β =

√
log(dδ−1)

nd , η = 0.95
√

log d
nd and

γ = 1.05
√

d log d
n , Exp3.P satisfies with probability at least 1− δ:

n∑

t=1

`It ,t − min
i=1,...,d

n∑

t=1

`i ,t ≤ 5.15
√

nd log(dδ−1).

On the other hand with β =
√

log d
nd , η = 0.95

√
log d
nd and

γ = 1.05
√

d log d
n , Exp3.P satisfies, for any δ ∈ (0, 1), with

probability at least 1− δ:

n∑

t=1

`It ,t − min
i=1,...,d

n∑

t=1

`i ,t ≤

√
nd

log d
log(δ−1) + 5.15

√
nd log d .
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Other types of normalization

INF (Implicitly Normalized Forecaster) is based on a potential
function ψ : R∗− → R∗+ increasing, convex, twice continuously
differentiable, and such that (0, 1] ⊂ ψ(R∗−).

At each time step INF computes the new probability
distribution as follows:

pt(i) = ψ

(
Ct −

t−1∑

s=1

˜̀
i ,s

)
,

where Ct is the unique real number such that
∑d

i=1 pt(i) = 1.

ψ(x) = exp(ηx) + γ
d corresponds exactly to the Exp3 strategy.

ψ(x) = (−ηx)−1/2 + γ
d is the quadratic INF strategy.
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Minimax optimal regret bound

Theorem (Audibert and Bubeck [2009], Audibert and Bubeck
[2010], Audibert, Bubeck and Lugosi [2011])

Quadratic INF satisfies:

Rn ≤ 2
√

2nd .



Extension: partial monitoring

Partial monitoring: the received feedback at time t is some
signal S(It , `t), see Cesa-Bianchi and Lugosi [2006].

A simple interpolation between full info. and bandit feedback
is the partial monitoring setting of Mannor and Shamir [2011]:
S(It , `t) = {`i ,t , i ∈ N (It)} where
N : {1, . . . , d} → P({1, . . . , d}) is some known
neighboorhood mapping. A natural loss estimate in that case
is

˜̀
i ,t =

`i ,t1i∈N (It)∑
j∈N (i) pt(j)

.

Mannor and Shamir [2011] proved that Exp with the above
estimate has a regret of order

√
αn where α is the

independence number of the graph associated to N .
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Extension: contextual bandits

Contextual bandits: at each time step t one receives a context
st ∈ S, and one wants to perform as well as the best mapping
from contexts to arms:

RSn = E
n∑

t=1

`It ,t − min
g :S→{1,...,d}

E
n∑

t=1

`g(st),t .

A related problem is bandit with experts advice: N experts are
playing the game, and the player observes their actions ξkt ,
k = 1, . . . ,N. One wants to compete with the best expert:

RN
n = E

n∑

t=1

`It ,t − min
k∈{1,...,N}

E
n∑

t=1

`ξkt ,t .

With the bandit feedback `It ,t one can build an estimate for

the loss of expert k as ˜̀k
t =

`It ,t1It=ξkt
pt(It)

. Playing Exp on the set
of experts with the above loss estimate yields
RN
n ≤

√
2nd logN.
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Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).
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µIt =
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Optimism in face of uncertainty

General principle: given some observations from an unknown
environment, build (with some probabilistic argument) a set of
possible environments Ω, then act as if the real environment was
the most favorable one in Ω.

Application to stochastic bandits: given the past rewards, build
confidence intervals for the means (µi ) (in particular build upper
confidence bounds), then play the arm with the highest upper
confidence bound.
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UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X ,X1, . . . ,Xt be i.i.d random variables in [0, 1], then with
probability at least 1− δ,

EX ≤ 1

t

t∑

s=1

Xs +

√
log δ−1

2t
.

This directly suggests the famous UCB strategy of Auer,
Cesa-Bianchi and Fischer [2002]:

It ∈ argmax
1≤i≤d

1

Ti (t − 1)

Ti (t−1)∑

s=1

Xi ,s +

√
2 log t

Ti (t − 1)
.

Auer et al. proved the following regret bound:

Rn ≤
∑

i :∆i>0

10 log n

∆i
.
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MOSS (Minimax Optimal Stochastic Strategy)

In a distribution-free sense one can show that UCB has a regret
always bounded as Rn ≤ c

√
nd log n. Furthermore one can prove

that for any strategy there exists a set of distributions such that
Rn ≥ 1

20

√
nd . To close this gap Audibert and Bubeck (2009)

introduced MOSS:

It = argmax
i∈{1,...,d}

1

Ti (t − 1)

Ti (t−1)∑

s=1

Xi ,s +

√√√√max
(

log
(

n
KTi (t−1)

)
, 0
)

Ti (t − 1)
.

One can show that MOSS satisfies:

Rn ≤ c
d

∆
log(n), and Rn ≤ c

√
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Distribution-dependent lower bound

For any p, q ∈ [0, 1], let

kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. ∀a > 0, we have
ETi (n) = o(na) if ∆i > 0. Then for any Bernoulli reward
distributions,

lim inf
n→+∞

Rn

log n
≥
∑

i :∆i>0

∆i

kl(µi , µ∗)
.

Note that
1

2∆i
≥ ∆i

kl(µi , µ∗)
≥ µ∗(1− µ∗)

2∆i
.
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KL-UCB

Theorem (Chernoff’s inequality)

Let X ,X1, . . . ,Xt be i.i.d random variables in [0, 1], then

P

(
1

t

t∑

s=1

Xs ≤ EX − ε

)
≤ exp (−t kl(EX − ε,EX )) .

In particular this implies that with probability at least 1− δ:

EX ≤ max

{
q ∈ [0, 1] : kl

(
1

t

t∑

s=1

Xs , q

)
≤ log δ−1

t

}
.
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KL-UCB

Thus Chernoff’s bound suggests the KL-UCB strategy of Garivier
and Cappé [2011] (see also Honda and Takemura [2010], Maillard,
Munos and Stoltz [2011]) :

It ∈ argmax
1≤i≤d

max

{
q ∈ [0, 1] :

kl


 1

Ti (t − 1)

Ti (t−1)∑

s=1

Xi ,s , q


 ≤ (1 + ε) log t

Ti (t − 1)

}
.

Garivier and Cappé proved the following regret bound for n large
enough:

Rn ≤
∑

i :∆i>0

(1 + 2ε)
∆i

kl(µi , µ∗)
log n.
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A non-UCB strategy: Thompson’s sampling

In Thompson [1933] the following strategy was proposed for the
case of Bernoulli distributions:

Assume a uniform prior on the parameters µi ∈ [0, 1].

Let πi ,t be the posterior distribution for µi at the tth round.

Let θi ,t ∼ πi ,t (independently from the past given πi ,t).

It ∈ argmaxi=1,...,d θi ,t .

The first theoretical guarantee for this strategy was provided in
Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos
[2012] it was proved that it attains essentially the same regret than
KL-UCB.
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Heavy-tailed distributions

The standard UCB works for all σ2 - subgaussian distributions (not
only bounded distributions), i.e. such that

E exp (λ(X − EX )) ≤ σ2λ2

2
,∀λ ∈ R.

It is easy to see that this is equivalent to

∃α > 0 s.t. E exp(αX 2) < +∞.

What happens for distributions with heavier tails? Can we get
logarithmic regret if the distributions only have a finite variance?
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Median of means, Alon, Gibbons, Matias and Szegedy
[2002]

Lemma

Let X ,X1, . . . ,Xn be i.i.d random variables such that
E(X − EX )2 ≤ 1. Let δ ∈ (0, 1), k = 8 log δ−1 and N = n

8 log δ−1 .
Then with probability at least 1− δ,

EX ≤ median


 1

N

N∑

s=1

Xs , . . . ,
1

N

kN∑

s=(k−1)N+1

Xs


+ 8

√
8 log(δ−1)

n
.
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Robust UCB

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and
Lugosi [2012]:

It ∈ argmax
1≤i≤d

median


 1

Ni ,t

Ni,t∑

s=1

Xi ,s , . . . ,
1

Ni ,t

ktNi,t∑

s=(kt−1)Ni,t+1

Xi ,s




+ 32

√
log t

Ti (t − 1)
,

with kt = 16 log t and Ni ,t = Ti (t−1)
16 log t . The following regret bound

can be proved for any set of distributions with variance bounded by
1:

Rn ≤ c
∑

i :∆i>0

log n

∆i
.
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Markovian rewards

Assumption

The sequence (Xi ,t)t≥1 forms an aperiodic irreducible finite-state
Markov chain with unknown transition matrix Pi .

Again in this framework it is possible to design a UCB strategy
with logarithmic regret (Tekin and Liu, [2011]), using the following
result:

Theorem (Lezaud [1998])

Let X1, . . . ,Xt be an aperiodic irreducible finite-state Markov chain
with transition matrix P. Let λ2 be the second largest eigenvalue
of the multiplicative symmetrization of P and ε = 1− λ2. Let µ be
the expectation of X1 under the stationary distribution. There
exists C > 0 such that for any γ ∈ (0, 1],

P

(
1

t

t∑

s=1

Xs ≥ µ+ γ

)
≤ C exp

(
− tγ2ε

28

)
.
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Online Lipschitz and Stochastic Optimization

Stochastic multi-armed bandit where {1, . . . ,K} is replaced by X .
At time t, select xt ∈ X , then receive a random variable rt ∈ [0, 1]
such that E[rt |xt ] = f (xt).

Assumption

X is equipped with a symmetric function ρ : X × X → R+ such
that ρ(x , x) = 0. f is Lipschitz with respect to ρ, that is

|f (x)− f (y)| ≤ ρ(x , y), ∀x , y ∈ X .

Rn = nf ∗ − E
n∑

t=1

f (xt),

where f ∗ = supx∈X f (x).
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|f (x)− f (y)| ≤ ρ(x , y), ∀x , y ∈ X .

Rn = nf ∗ − E
n∑

t=1

f (xt),

where f ∗ = supx∈X f (x).



Example in 1d



Where should one sample next?

x

How to define a high probability upper bound at any state x?



Noiseless case, rt = f (xt)

f(x )t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .



Noiseless case, rt = f (xt)

New point → refined upper-bound on f .



Noiseless case, rt = f (xt)



Back to the noisy case

x



UCB in a given domain

xt

f(xt)

rt

x

Xi

For a fixed domain Xi 3 x containing ni points {xt} ∈ Xi , we have
that

∑ni
t=1 rt − f (xt) is a martingale. Thus by Azuma’s inequality,

1

ni

ni∑

t=1

rt +

√
log 1/δ

2ni
≥ 1

ni

ni∑

t=1

f (xt) ≥ f (x)− diam(Xi ),

since f is Lipschitz (where diam(Xi ) = supx ,y∈Xi
ρ(x , y)).
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High probability upper bound

1
ni

∑ni

t=1 rt

diam(Xi)

√
log 1/δ
2ni

Upper-bound

Xi

w.p. 1− δ, 1

ni

ni∑

t=1

rt +

√
log 1/δ

2ni
+ diam(Xi ) ≥ sup

x∈Xi

f (x).

Tradeoff between number of points in a domain and size of the domain.

By considering several domains we can derive a tigther upper bound.
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A hierarchical decomposition

Use a tree of partitions at all scales:

Bi (t)
def
= min

{
µ̂i (t) +

√
2 log(t)

Ti (t)
+ diam(i), max

j∈C(i)
Bj(t)

}



Hierarchical Optimistic Optimization (HOO)

[Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011]: Consider a tree
of partitions of X , each node i corresponds to a subdomain Xi .

HOO Algorithm:
Let Tt be the set of expanded
nodes at round t.
- T1 = {root} (space X )
- At t, select a leaf It of Tt by
maximizing the B-values,
- Tt+1 = Tt ∪ {It}
- Select xt ∈ XIt

- Observe reward rt and update
the B-values:

h,i
B

B
h+1,2i−1

B
h+1,2i

X t

Turned−on
nodes

Followed path

Selected node

Pulled point

Bi (t)
def
= min

[
µ̂i (t) +

√
2 log(t)

Ti (t)
+ diam(i), max

j∈C(i)
Bj(t)

]



Example in 1d

rt ∼ B(f (xt)) a Bernoulli distribution with parameter f (xt)

Resulting tree at time n = 1000 and at n = 10000.



Analysis of HOO

The near-optimality dimension d of f is defined as follows: Let

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}

be the set of ε-optimal points. Then Xε can be covered by O(ε−d)
balls of radius ε. A similar notion was introduced in [Kleinberg,
Slivkins, Upfal, 2008].

Theorem (Bubeck, Munos, Stoltz, Szepesvári, 2008)

HOO satisfies:
Rn = Õ(n

d+1
d+2 ).
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Example 1:

Assume the function is locally peaky around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||).

ε

ε

It takes O(ε0) balls of radius ε to cover Xε with ρ(x , y) = ||x − y ||.
Thus d = 0 and the regret is Õ(

√
n).
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Example 2:
Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2).

ε

ε

For ρ(x , y) = ||x − y ||, it takes O(ε−D/2) balls of radius ε to

cover Xε. Thus d = D/2 and Rn = Õ(n
D+2
D+4 ).

For ρ(x , y) = ||x − y ||2, it takes O(ε0) ρ-balls of radius ε to
cover Xε. Thus d = 0 and Rn = Õ(

√
n).
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√
n).



Example 2:
Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||2).

ε

ε

For ρ(x , y) = ||x − y ||, it takes O(ε−D/2) balls of radius ε to

cover Xε. Thus d = D/2 and Rn = Õ(n
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Example

X = [0, 1]D , α ≥ 0 and mean-payoff function f locally ”α-smooth”
around (any of) its maximum x∗ (in finite number):

f (x∗)− f (x) = Θ(||x − x∗||α) as x → x∗.

Theorem

Assume that we run HOO using ρ(x , y) = ||x − y ||β.

Known smoothness: β = α. Rn = Õ(
√
n), i.e., the rate is

independent of the dimension D.

Smoothness underestimated: β < α.

Rn = Õ(n(d+1)/(d+2)) where d = D
(

1
β −

1
α

)
.

Smoothness overestimated: β > α. No guarantee. Note:
UCT corresponds to β = +∞.
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Path planning
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Notation

S ⊂ {0, 1}d

`2 `6 `d−1

`1

`4

`5
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`d`3
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`7 `t ∈ Rd
+

`2 `6 `d−1
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`d`3
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`7 Vt ∈ S, loss suffered: `Tt Vt

Rn = E
n∑

t=1

`Tt Vt −min
u∈S

E
n∑

t=1

`Tt u
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Set of concepts S ⊂ {0, 1}d

Paths k-sets Matchings

k-sized intervals

Spanning trees

Parallel bandits



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.
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Loss assumptions

Definition (L∞)

We say that the adversary satisfies the L∞ assumption: if
‖`t‖∞ ≤ 1 for all t = 1, . . . , n.

Definition (L2)

We say that the adversary satisfies the L2 assumption: if `Tt v ≤ 1
for all t = 1, . . . , n and v ∈ S.
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Expanded Exponentially weighted average forecaster
(Exp2)

pt(v) =
exp

(
−η
∑t−1

s=1
˜̀T
s v
)

∑
u∈S exp

(
−η
∑t−1

s=1
˜̀T
s u
)

In the full information game, against L2 adversaries, we have
(for some η)

Rn ≤
√

2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].

Thus against L∞ adversaries we have

Rn ≤ d3/2
√

2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

Audibert, Bubeck and Lugosi [2011] showed that, for any η,
there exists a subset S ⊂ {0, 1}d and an L∞ adversary such
that:

Rn ≥ 0.02 d3/2√n.
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Legendre function

Definition

Let D be a convex subset of Rd with nonempty interior int(D) and
boundary ∂D. We call Legendre any function F : D → R such that

F is strictly convex and admits continuous first partial
derivatives on int(D),

For any u ∈ ∂D, for any v ∈ int(D), we have

lim
s→0,s>0

(u − v)T∇F
(
(1− s)u + sv

)
= +∞.
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Bregman divergence

Definition

The Bregman divergence DF : D × int(D) associated to a
Legendre function F is defined by

DF (u, v) = F (u)− F (v)− (u − v)T∇F (v).

Definition

The Legendre transform of F is defined by

F ∗(u) = sup
x∈D

xTu − F (x).

Key property for Legendre functions: ∇F ∗ = (∇F )−1.



Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on D ⊃ Conv(S)

Conv(S)

D

∆(S)

(1) w ′t+1 ∈ D :

w ′t+1 = ∇F ∗
(
∇F (wt)− ˜̀

t

)

(2) wt+1 ∈ argmin
w∈Conv(S)

DF (w ,w ′t+1)

(3) pt+1 ∈ ∆(S) : wt+1 = EV∼pt+1V
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General regret bound for OSMD

Theorem

If F admits a Hessian ∇2F always invertible then,

Rn / diamDF
(S) + E

n∑

t=1

˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t .



Different instances of OSMD: LinExp (Entropy Function)

D = [0,+∞)d , F (x) = 1
η

∑d
i=1 xi log xi





Full Info: Exp

Semi-Bandit=Bandit: Exp3
Auer et al. [2002]





Full Info: Component Hedge
Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Bandit: bad algorithm!
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Different instances of OSMD: LinINF (Exchangeable
Hessian)

D = [0,+∞)d , F (x) =
∑d

i=1

∫ xi
0 ψ−1(s)ds

INF, Audibert and Bubeck [2009]

{
ψ(x) = exp(ηx) : LinExp
ψ(x) = (−ηx)−q, q > 1 : LinPoly
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Different instances of OSMD: Follow the regularized leader

D = Conv(S), then

wt+1 ∈ argmin
w∈D

(
t∑

s=1

˜̀T
s w + F (w)

)

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]
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Minimax regret for the full information game

Theorem (Koolen, Warmuth and Kivinen [2010])

In the full information game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S ⊂ {0, 1}d and any
L∞-adversary:

Rn ≤ d
√

2n.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.008 d
√
n.



Minimax regret for the semi-bandit game

Theorem (Audibert, Bubeck and Lugosi [2011])

In the semi-bandit game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S ⊂ {0, 1}d and any
L∞-adversary:

Rn ≤ d
√

2n.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.008 d
√
n.



Minimax regret for the bandit game

For the bandit game the situation becomes trickier.

First it appears necessary to add some sort of forced
exploration on S to control third order error terms in the
regret bound.

Second, the control of the quadratic term ˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t

is much more involved than previously.
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John’s distribution

Theorem (John’s Theorem)

Let K ⊂ Rd be a convex set. If the ellipsoid E of minimal volume
enclosing K is the unit ball in some norm derived from a scalar
product 〈·, ·〉, then there exists M ≤ d(d + 1)/2 + 1 contact points
u1, . . . , uM between E and K, and µ ∈ ∆M (the simplex of
dimension M − 1), such that

x = d
M∑

i=1

µi 〈x , ui 〉ui ,∀ x ∈ Rd .



Minimax regret for the bandit game

Theorem (Audibert, Bubeck and Lugosi [2011], Bubeck,
Cesa-Bianchi and Kakade [2012])

In the bandit game, the Exp2 strategy with John’s exploration
satisfies for any concept class S ⊂ {0, 1}d and any L∞-adversary:

Rn ≤ 4d2√n,

and respectively Rn ≤ 4d
√
n for an L2-adversary.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.01 d3/2√n.

For L2-adversaries the lower bound is 0.05 min(n, d
√
n).

Conjecture: for an L∞-adversary the correct order of magnitude is
d3/2√n and it can be attained with OSMD.
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