Tutorial on Bandit Games

Sébastien Bubeck

Adversary

Player

Adversary

Adversary

Player

Adversary

Some Applications

Computer Go

Brain computer interface

Medical trials

Packets routing

Ads placement

Dynamic allocation

A little bit of advertising

S. Bubeck and N. Cesa-Bianchi.

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.

Foundations and Trends in Machine Learning, Vol 5: No 1, 1-122, 2012.

Notation

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector $\ell_t = (\ell_{1,t}, \ldots, \ell_{d,t}) \in [0,1]^d.$
- (a) The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured l_{l,t} in the bandit setting.

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E} \sum_{t=1}^n \ell_{i,t}$$

Notation

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector $\ell_t = (\ell_{1,t}, \ldots, \ell_{d,t}) \in [0,1]^d.$
- 3 The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured l_{l,t} in the bandit setting.

$$R_n = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E}\sum_{t=1}^n \ell_{i,t}$$

Notation

For each round $t = 1, 2, \ldots, n$;

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector $\ell_t = (\ell_{1,t}, \ldots, \ell_{d,t}) \in [0, 1]^d$.
- **(3)** The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured l_{i,t} in the bandit setting.

$$R_n = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E}\sum_{t=1}^n \ell_{i,t}$$

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector ℓ_t = (ℓ_{1,t},..., ℓ_{d,t}) ∈ [0, 1]^d.
- **③** The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured $\ell_{l_t,t}$ in the bandit setting.

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E} \sum_{t=1}^n \ell_{i,t}$$

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector ℓ_t = (ℓ_{1,t},..., ℓ_{d,t}) ∈ [0, 1]^d.
- **③** The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured $\ell_{I_t,t}$ in the bandit setting.

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E} \sum_{t=1}^n \ell_{i,t}.$$

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector ℓ_t = (ℓ_{1,t},..., ℓ_{d,t}) ∈ [0, 1]^d.
- **③** The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - \bullet Only the loss incured $\ell_{l_t,t}$ in the bandit setting.

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E} \sum_{t=1}^n \ell_{i,t}.$$

- The player chooses an arm $l_t \in \{1, ..., d\}$, possibly with the help of an external randomization.
- Simultaneously the adversary chooses a loss vector ℓ_t = (ℓ_{1,t},..., ℓ_{d,t}) ∈ [0, 1]^d.
- **③** The player incurs the loss $\ell_{l_t,t}$, and observes:
 - The loss vector ℓ_t in the full information setting.
 - Only the loss incured $\ell_{I_t,t}$ in the bandit setting.

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_{I_t,t} - \min_{i=1,\dots,d} \mathbb{E} \sum_{t=1}^n \ell_{i,t}$$

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw l_t at random from p_t where

$$p_t(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{j,s}\right)}$$

Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire and Warmuth [1997])

Exp satisfies

$$R_n \leq \sqrt{\frac{n\log d}{2}}.$$

$$\sup_{adversaries} R_n \ge \sqrt{\frac{n\log d}{2}} + o(\sqrt{n\log d})$$

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw l_t at random from p_t where

$$p_t(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{j,s}\right)}$$

Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire and Warmuth [1997])

Exp satisfies

$$R_n \leq \sqrt{\frac{n\log d}{2}}.$$

$$\sup_{adversaries} R_n \ge \sqrt{\frac{n\log d}{2}} + o(\sqrt{n\log d})$$

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw l_t at random from p_t where

$$p_t(i) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{j,s}\right)}$$

Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire and Warmuth [1997])

Exp satisfies

$$R_n \leq \sqrt{\frac{n\log d}{2}}.$$

$$\sup_{adversaries} R_n \geq \sqrt{\frac{n\log d}{2}} + o(\sqrt{n\log d}).$$

The one-slide-proof

$$w_t(i) = \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right), \quad W_t = \sum_{i=1}^d w_t(i), \quad p_t(i) = \frac{w_t(i)}{W_t}$$

$$\log \frac{W_{n+1}}{W_1} = \log \left(\frac{1}{d} \sum_{i=1}^d w_{n+1}(i) \right) \ge \log \left(\frac{1}{d} \max_i w_{n+1}(i) \right)$$
$$= -\eta \min \sum_{i=1}^n \ell_{i,t} - \log d$$

$$\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t} = \sum_{t=1}^n \log \left(\sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \ell_{i,t}) \right)$$
$$= \sum_{t=1}^n \log \left(\mathbb{E} \exp(-\eta \ell_{l_{t,t}}) \right)$$
$$\leq \sum_{t=1}^n \left(-\eta \mathbb{E} \ell_{l_t,t} + \frac{\eta^2}{8} \right)$$

The one-slide-proof

$$w_t(i) = \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right), \quad W_t = \sum_{i=1}^d w_t(i), \quad p_t(i) = \frac{w_t(i)}{W_t}$$

$$\log \frac{W_{n+1}}{W_1} = \log \left(\frac{1}{d} \sum_{i=1}^d w_{n+1}(i) \right) \geq \log \left(\frac{1}{d} \max_i w_{n+1}(i) \right)$$
$$= -\eta \min_i \sum_{t=1}^n \ell_{i,t} - \log d$$

$$\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t} = \sum_{t=1}^n \log \left(\sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \ell_{i,t}) \right)$$
$$= \sum_{t=1}^n \log \left(\mathbb{E} \exp(-\eta \ell_{l,t}) \right)$$
$$\leq \sum_{t=1}^n \left(-\eta \mathbb{E} \ell_{l_t,t} + \frac{\eta^2}{8} \right)$$

The one-slide-proof

$$w_t(i) = \exp\left(-\eta \sum_{s=1}^{t-1} \ell_{i,s}\right), \quad W_t = \sum_{i=1}^d w_t(i), \quad p_t(i) = \frac{w_t(i)}{W_t}$$

$$\log \frac{W_{n+1}}{W_1} = \log \left(\frac{1}{d} \sum_{i=1}^d w_{n+1}(i) \right) \ge \log \left(\frac{1}{d} \max_i w_{n+1}(i) \right)$$
$$= -\eta \min_i \sum_{t=1}^n \ell_{i,t} - \log d$$

$$\log \frac{W_{n+1}}{W_1} = \sum_{t=1}^n \log \frac{W_{t+1}}{W_t} = \sum_{t=1}^n \log \left(\sum_{i=1}^d \frac{w_t(i)}{W_t} \exp(-\eta \ell_{i,t}) \right)$$
$$= \sum_{t=1}^n \log \left(\mathbb{E} \exp(-\eta \ell_{l,t}) \right)$$
$$\leq \sum_{t=1}^n \left(-\eta \mathbb{E} \ell_{l,t,t} + \frac{\eta^2}{8} \right)$$

Magic trick for bandit feedback

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_t(i)} \mathbb{1}_{I_t=i},$$

is an unbiased estimate of $\ell_{i,t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003]) *Exp3 satisfies:* $R_n \leq \sqrt{2nd \log d}$.

$$\sup_{adversaries} R_n \geq \frac{1}{4}\sqrt{nd} + o(\sqrt{nd})$$

Magic trick for bandit feedback

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_t(i)} \mathbb{1}_{I_t=i},$$

is an unbiased estimate of $\ell_{i,t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])

Exp3 satisfies:

 $R_n \leq \sqrt{2nd \log d}.$

$$\sup_{adversaries} R_n \geq rac{1}{4}\sqrt{nd} + o(\sqrt{nd}).$$

Magic trick for bandit feedback

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_t(i)} \mathbb{1}_{I_t=i},$$

is an unbiased estimate of $\ell_{i,t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])

Exp3 satisfies:

 $R_n \leq \sqrt{2nd \log d}.$

$$\sup_{adversaries} R_n \geq rac{1}{4}\sqrt{nd} + o(\sqrt{nd}).$$

What about bounds directly on the true regret

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,\dots,d} \sum_{t=1}^{n} \ell_{i,t} ?$$

Auer et al. [2003] proposed Exp3.P:

$$p_t(i) = (1 - \gamma) \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s}\right)} + \frac{\gamma}{d}$$

where

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\rho_t(i)} \mathbb{1}_{l_t=i} + \frac{\beta}{\rho_t(i)}.$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011] Exp3.P satisfies with probability at least $1 - \delta$:

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,...,d} \sum_{t=1}^{n} \ell_{i,t} \le 5.15 \sqrt{nd \log(d\delta^{-1})}.$$

What about bounds directly on the true regret

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,\dots,d} \sum_{t=1}^{n} \ell_{i,t} ?$$

Auer et al. [2003] proposed Exp3.P:

$$p_t(i) = (1 - \gamma) \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s}\right)} + \frac{\gamma}{d},$$

where

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\rho_t(i)} \mathbb{1}_{l_t=i} + \frac{\beta}{\rho_t(i)}.$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011] Exp3 P satisfies with probability at least $1 - \delta$:

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,...,d} \sum_{t=1}^{n} \ell_{i,t} \le 5.15 \sqrt{nd \log(d\delta^{-1})}.$$

What about bounds directly on the true regret

٦

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,\dots,d} \sum_{t=1}^{n} \ell_{i,t} ?$$

Auer et al. [2003] proposed Exp3.P:

$$p_t(i) = (1 - \gamma) \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s}\right)} + \frac{\gamma}{d},$$

where

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_t(i)} \mathbb{1}_{l_t=i} + \frac{\beta}{p_t(i)}.$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011] Exp3 P satisfies with probability at least $1 - \delta$:

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,...,d} \sum_{t=1}^{n} \ell_{i,t} \le 5.15 \sqrt{nd \log(d\delta^{-1})}.$$

What about bounds directly on the true regret

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,\dots,d} \sum_{t=1}^{n} \ell_{i,t} ?$$

Auer et al. [2003] proposed Exp3.P:

٦

$$p_t(i) = (1 - \gamma) \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right)}{\sum_{j=1}^d \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j,s}\right)} + \frac{\gamma}{d},$$

where

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{p_t(i)} \mathbb{1}_{l_t=i} + \frac{\beta}{p_t(i)}.$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011]) Exp3.P satisfies with probability at least $1 - \delta$:

$$\sum_{t=1}^{n} \ell_{I_{t},t} - \min_{i=1,...,d} \sum_{t=1}^{n} \ell_{i,t} \le 5.15 \sqrt{nd \log(d\delta^{-1})}$$

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function ψ : ℝ^{*}₊ → ℝ^{*}₊ increasing, convex, twice continuously differentiable, and such that (0, 1] ⊂ ψ(ℝ^{*}₋).
- At each time step INF computes the new probability distribution as follows:

$$p_t(i) = \psi\left(C_t - \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right),$$

where C_t is the unique real number such that $\sum_{i=1}^{d} p_t(i) = 1$. • $\psi(x) = \exp(\eta x) + \frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy. • $\psi(x) = (-\eta x)^{-1/2} + \frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

Quadratic INF satisfies: $R_n \leq 2\sqrt{2nd}$.

- INF (Implicitly Normalized Forecaster) is based on a potential function ψ : ℝ^{*}₊ → ℝ^{*}₊ increasing, convex, twice continuously differentiable, and such that (0, 1] ⊂ ψ(ℝ^{*}₋).
- At each time step INF computes the new probability distribution as follows:

$$p_t(i) = \psi\left(C_t - \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right),$$

where C_t is the unique real number such that $\sum_{i=1}^{d} p_t(i) = 1$. • $\psi(x) = \exp(\eta x) + \frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy. • $\psi(x) = (-\eta x)^{-1/2} + \frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

- INF (Implicitly Normalized Forecaster) is based on a potential function ψ : ℝ^{*}₊ → ℝ^{*}₊ increasing, convex, twice continuously differentiable, and such that (0, 1] ⊂ ψ(ℝ^{*}₋).
- At each time step INF computes the new probability distribution as follows:

$$p_t(i) = \psi\left(C_t - \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right),$$

where C_t is the unique real number such that $\sum_{i=1}^{d} p_t(i) = 1$. • $\psi(x) = \exp(\eta x) + \frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy. • $\psi(x) = (-\eta x)^{-1/2} + \frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

- INF (Implicitly Normalized Forecaster) is based on a potential function ψ : ℝ^{*}₊ → ℝ^{*}₊ increasing, convex, twice continuously differentiable, and such that (0, 1] ⊂ ψ(ℝ^{*}₋).
- At each time step INF computes the new probability distribution as follows:

$$p_t(i) = \psi\left(C_t - \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right),$$

where C_t is the unique real number such that $\sum_{i=1}^{d} p_t(i) = 1$. • $\psi(x) = \exp(\eta x) + \frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy.

• $\psi(x) = (-\eta x)^{-1/2} + \frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

- INF (Implicitly Normalized Forecaster) is based on a potential function ψ : ℝ^{*}₊ → ℝ^{*}₊ increasing, convex, twice continuously differentiable, and such that (0, 1] ⊂ ψ(ℝ^{*}₋).
- At each time step INF computes the new probability distribution as follows:

$$p_t(i) = \psi\left(C_t - \sum_{s=1}^{t-1} \tilde{\ell}_{i,s}\right),$$

where C_t is the unique real number such that $\sum_{i=1}^{d} p_t(i) = 1$. • $\psi(x) = \exp(\eta x) + \frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy. • $\psi(x) = (-\eta x)^{-1/2} + \frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

Extension: contextual bandits

• Contextual bandits: at each time step t one receives a context $s_t \in S$, and one wants to perform as well as the best mapping from contexts to arms:

$$R_n^{\mathcal{S}} = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{g:\mathcal{S} \to \{1,\ldots,d\}} \mathbb{E}\sum_{t=1}^n \ell_{g(s_t),t}.$$

• A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ_t^k , k = 1, ..., N. One wants to compete with the best expert:

$$R_n^N = \mathbb{E}\sum_{t=1}^n \ell_{l_t,t} - \min_{k \in \{1,\dots,N\}} \mathbb{E}\sum_{t=1}^n \ell_{\xi_t^k,t}$$

With the bandit feedback $\ell_{l_t,t}$ one can build an estimate for the loss of expert k as $\tilde{\ell}_t^k = \frac{\ell_{l_t,t} \mathbf{1}_{l_t = \xi_t^k}}{p_t(l_t)}$. Playing Exp on the set of experts with the above loss estimate yields $R_n^N \leq \sqrt{2nd \log N}$.

Extension: contextual bandits

• Contextual bandits: at each time step t one receives a context $s_t \in S$, and one wants to perform as well as the best mapping from contexts to arms:

$$R_n^{\mathcal{S}} = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{g:\mathcal{S} \to \{1,\ldots,d\}} \mathbb{E}\sum_{t=1}^n \ell_{g(s_t),t}.$$

A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ^k_t, k = 1,..., N. One wants to compete with the best expert:

$$R_n^N = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{k \in \{1,\dots,N\}} \mathbb{E}\sum_{t=1}^n \ell_{\xi_t^k,t}$$

With the bandit feedback $\ell_{l_t,t}$ one can build an estimate for the loss of expert k as $\tilde{\ell}_t^k = \frac{\ell_{l_t,t} \mathbb{1}_{l_t = \xi_t^k}}{p_t(l_t)}$. Playing Exp on the set of experts with the above loss estimate yields $R_n^N \leq \sqrt{2nd \log N}$.

Extension: contextual bandits

• Contextual bandits: at each time step t one receives a context $s_t \in S$, and one wants to perform as well as the best mapping from contexts to arms:

$$R_n^{\mathcal{S}} = \mathbb{E}\sum_{t=1}^n \ell_{I_t,t} - \min_{g:\mathcal{S} \to \{1,\ldots,d\}} \mathbb{E}\sum_{t=1}^n \ell_{g(s_t),t}.$$

A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ^k_t, k = 1,..., N. One wants to compete with the best expert:

$$R_n^N = \mathbb{E}\sum_{t=1}^n \ell_{l_t,t} - \min_{k \in \{1,\dots,N\}} \mathbb{E}\sum_{t=1}^n \ell_{\xi_t^k,t}$$

With the bandit feedback $\ell_{l_t,t}$ one can build an estimate for the loss of expert k as $\tilde{\ell}_t^k = \frac{\ell_{l_t,t} \mathbb{1}_{l_t = \xi_t^k}}{p_t(l_t)}$. Playing Exp on the set of experts with the above loss estimate yields $R_n^N \leq \sqrt{2nd \log N}$.

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal S(It, lt), see Cesa-Bianchi and Lugosi [2006].
- A simple interpolation between full info. and bandit feedback is the partial monitoring setting of Mannor and Shamir [2011]: S(I_t, ℓ_t) = {ℓ_{i,t}, i ∈ N(I_t)} where N : {1,...,d} → P({1,...,d}) is some known neighboorhood mapping. A natural loss estimate in that case is

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t} \mathbb{1}_{i \in \mathcal{N}(l_t)}}{\sum_{j \in \mathcal{N}(l)} p_t(j)}.$$

Mannor and Shamir [2011] proved that Exp with the above estimate has a regret of order $\sqrt{\alpha n}$ where α is the independence number of the graph associated to \mathcal{N} .

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal S(It, lt), see Cesa-Bianchi and Lugosi [2006].
- A simple interpolation between full info. and bandit feedback is the partial monitoring setting of Mannor and Shamir [2011]: S(I_t, ℓ_t) = {ℓ_{i,t}, i ∈ N(I_t)} where N : {1,...,d} → P({1,...,d}) is some known neighboorhood mapping. A natural loss estimate in that case is

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t} \mathbb{1}_{i \in \mathcal{N}(I_t)}}{\sum_{j \in \mathcal{N}(i)} p_t(j)}.$$

Mannor and Shamir [2011] proved that Exp with the above estimate has a regret of order $\sqrt{\alpha n}$ where α is the independence number of the graph associated to \mathcal{N} .

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal S(It, lt), see Cesa-Bianchi and Lugosi [2006].
- A simple interpolation between full info. and bandit feedback is the partial monitoring setting of Mannor and Shamir [2011]: S(I_t, ℓ_t) = {ℓ_{i,t}, i ∈ N(I_t)} where N : {1,...,d} → P({1,...,d}) is some known neighboorhood mapping. A natural loss estimate in that case is

$$\tilde{\ell}_{i,t} = \frac{\ell_{i,t} \mathbb{1}_{i \in \mathcal{N}(I_t)}}{\sum_{j \in \mathcal{N}(i)} p_t(j)}.$$

Mannor and Shamir [2011] proved that Exp with the above estimate has a regret of order $\sqrt{\alpha n}$ where α is the independence number of the graph associated to \mathcal{N} .

The sequence of losses $(\ell_t)_{1 \le t \le n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_i be the unknown reward distribution underlying arm *i*, μ_i the mean of ν_i , $\mu^* = \max_{1 \le i \le d} \mu_i$ and $\Delta_i = \mu^* - \mu_i$.
- Let $X_{i,s} \sim \nu_i$ be the reward obtained when pulling arm *i* for the *s*th time, and $T_i(t) = \sum_{s=1}^t \mathbb{1}_{I_s=i}$ the number of times arm *i* was pulled up to time *t*.

• Thus here

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n \mu_{I_t} = \sum_{i=1}^d \Delta_i \mathbb{E}T_i(n).$$

The sequence of losses $(\ell_t)_{1 \le t \le n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_i be the unknown reward distribution underlying arm *i*, μ_i the mean of ν_i , $\mu^* = \max_{1 \le i \le d} \mu_i$ and $\Delta_i = \mu^* - \mu_i$.
- Let $X_{i,s} \sim \nu_i$ be the reward obtained when pulling arm *i* for the *s*th time, and $T_i(t) = \sum_{s=1}^t \mathbb{1}_{I_s=i}$ the number of times arm *i* was pulled up to time *t*.

• Thus here

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n \mu_{I_t} = \sum_{i=1}^d \Delta_i \mathbb{E}T_i(n).$$

The sequence of losses $(\ell_t)_{1 \le t \le n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_i be the unknown reward distribution underlying arm *i*, μ_i the mean of ν_i , $\mu^* = \max_{1 \le i \le d} \mu_i$ and $\Delta_i = \mu^* - \mu_i$.
- Let $X_{i,s} \sim \nu_i$ be the reward obtained when pulling arm *i* for the *s*th time, and $T_i(t) = \sum_{s=1}^t \mathbb{1}_{I_s=i}$ the number of times arm *i* was pulled up to time *t*.
- Thus here

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n \mu_{I_t} = \sum_{i=1}^d \Delta_i \mathbb{E}T_i(n).$$

The sequence of losses $(\ell_t)_{1 \le t \le n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_i be the unknown reward distribution underlying arm *i*, μ_i the mean of ν_i , $\mu^* = \max_{1 \le i \le d} \mu_i$ and $\Delta_i = \mu^* - \mu_i$.
- Let $X_{i,s} \sim \nu_i$ be the reward obtained when pulling arm *i* for the s^{th} time, and $T_i(t) = \sum_{s=1}^t \mathbb{1}_{I_s=i}$ the number of times arm *i* was pulled up to time *t*.

Thus here

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n \mu_{I_t} = \sum_{i=1}^d \Delta_i \mathbb{E}T_i(n).$$

The sequence of losses $(\ell_t)_{1 \le t \le n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_i be the unknown reward distribution underlying arm *i*, μ_i the mean of ν_i , $\mu^* = \max_{1 \le i \le d} \mu_i$ and $\Delta_i = \mu^* - \mu_i$.
- Let $X_{i,s} \sim \nu_i$ be the reward obtained when pulling arm *i* for the s^{th} time, and $T_i(t) = \sum_{s=1}^t \mathbb{1}_{I_s=i}$ the number of times arm *i* was pulled up to time *t*.
- Thus here

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n \mu_{I_t} = \sum_{i=1}^d \Delta_i \mathbb{E}T_i(n).$$

General principle: given some observations from an unknown environment, build (with some probabilistic argument) a set of *possible* environments Ω , then act as if the real environment was the most favorable one in Ω .

Application to stochastic bandits: given the past rewards, build confidence intervals for the means (μ_i) (in particular build upper confidence bounds), then play the arm with the highest upper confidence bound.

General principle: given some observations from an unknown environment, build (with some probabilistic argument) a set of *possible* environments Ω , then act as if the real environment was the most favorable one in Ω .

Application to stochastic bandits: given the past rewards, build confidence intervals for the means (μ_i) (in particular build upper confidence bounds), then play the arm with the highest upper confidence bound.

UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X_1, \ldots, X_t be i.i.d random variables in [0, 1], then with probability at least $1 - \delta$,

$$\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_s + \sqrt{\frac{\log \delta^{-1}}{2t}}.$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]:

$$I_t \in \operatorname*{argmax}_{1 \leq i \leq d} \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s} + \sqrt{\frac{2\log t}{T_i(t-1)}}$$

Auer et al. proved the following regret bound:

$$R_n \leq \sum_{i:\Delta_i>0} \frac{10\log n}{\Delta_i}.$$

Theorem (Hoeffding [1963])

Let X, X_1, \ldots, X_t be i.i.d random variables in [0, 1], then with probability at least $1 - \delta$,

$$\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_s + \sqrt{\frac{\log \delta^{-1}}{2t}}.$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]:

$$I_t \in \operatorname*{argmax}_{1 \leq i \leq d} \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s} + \sqrt{\frac{2\log t}{T_i(t-1)}}.$$

Auer et al. proved the following regret bound:

$$R_n \leq \sum_{i:\Delta_i>0} \frac{10\log n}{\Delta_i}.$$

Theorem (Hoeffding [1963])

Let X, X_1, \ldots, X_t be i.i.d random variables in [0,1], then with probability at least $1 - \delta$,

$$\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_s + \sqrt{\frac{\log \delta^{-1}}{2t}}.$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]:

$$I_t \in \operatorname*{argmax}_{1 \leq i \leq d} \frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s} + \sqrt{\frac{2\log t}{T_i(t-1)}}$$

Auer et al. proved the following regret bound:

$$R_n \leq \sum_{i:\Delta_i>0} \frac{10\log n}{\Delta_i}.$$

Distribution-dependent lower bound

For any $p, q \in [0, 1]$, let

$$\operatorname{kl}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}.$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a > 0$, we have $\mathbb{E}T_i(n) = o(n^a)$ if $\Delta_i > 0$. Then for any Bernoulli reward distributions,

$$\liminf_{n \to +\infty} \frac{R_n}{\log n} \geq \sum_{i:\Delta_i > 0} \frac{\Delta_i}{\operatorname{kl}(\mu_i, \mu^*)}.$$

Note that

$$\frac{1}{2\Delta_i} \geq \frac{\Delta_i}{\mathrm{kl}(\mu_i, \mu^*)} \geq \frac{\mu^*(1-\mu^*)}{2\Delta_i}.$$

Distribution-dependent lower bound

For any $p,q \in [0,1]$, let

$$\operatorname{kl}(p,q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}.$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a > 0$, we have $\mathbb{E}T_i(n) = o(n^a)$ if $\Delta_i > 0$. Then for any Bernoulli reward distributions,

$$\liminf_{n \to +\infty} \frac{R_n}{\log n} \geq \sum_{i:\Delta_i > 0} \frac{\Delta_i}{\operatorname{kl}(\mu_i, \mu^*)}$$

Note that

$$\frac{1}{2\Delta_i} \ge \frac{\Delta_i}{\mathrm{kl}(\mu_i, \mu^*)} \ge \frac{\mu^*(1-\mu^*)}{2\Delta_i}.$$

Distribution-dependent lower bound

For any $p,q \in [0,1]$, let

$$\operatorname{kl}(p,q) = p \log rac{p}{q} + (1-p) \log rac{1-p}{1-q}.$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a > 0$, we have $\mathbb{E} T_i(n) = o(n^a)$ if $\Delta_i > 0$. Then for any Bernoulli reward distributions,

$$\liminf_{n \to +\infty} \frac{R_n}{\log n} \geq \sum_{i:\Delta_i > 0} \frac{\Delta_i}{\operatorname{kl}(\mu_i, \mu^*)}$$

Note that

$$rac{1}{2\Delta_i} \geq rac{\Delta_i}{\mathrm{kl}(\mu_i,\mu^*)} \geq rac{\mu^*(1-\mu^*)}{2\Delta_i}.$$

Theorem (Chernoff's inequality)

Let X, X_1, \ldots, X_t be i.i.d random variables in [0, 1], then

$$\mathbb{P}\left(\frac{1}{t}\sum_{s=1}^{t}X_{s}\leq\mathbb{E}X-\epsilon\right)\leq\exp\left(-t\,\operatorname{kl}(\mathbb{E}X-\epsilon,\mathbb{E}X)\right).$$

In particular this implies that with probability at least $1 - \delta$:

$$\mathbb{E}X \le \max\left\{q \in [0,1] : \operatorname{kl}\left(\frac{1}{t}\sum_{s=1}^{t}X_s,q\right) \le \frac{\log \delta^{-1}}{t}\right\}$$

Theorem (Chernoff's inequality)

Let X, X_1, \ldots, X_t be i.i.d random variables in [0, 1], then

$$\mathbb{P}\left(\frac{1}{t}\sum_{s=1}^{t}X_{s} \leq \mathbb{E}X - \epsilon\right) \leq \exp\left(-t \, \mathrm{kl}(\mathbb{E}X - \epsilon, \mathbb{E}X)\right).$$

In particular this implies that with probability at least $1-\delta$:

$$\mathbb{E}X \leq \max\left\{q \in [0,1]: \operatorname{kl}\left(rac{1}{t}\sum_{s=1}^{t}X_s,q\right) \leq rac{\log \delta^{-1}}{t}
ight\}.$$

KL-UCB

Theorem (Chernoff's inequality)

Let X, X_1, \ldots, X_t be i.i.d random variables in [0,1], then

$$\mathbb{P}\left(\frac{1}{t}\sum_{s=1}^{t}X_{s}\leq\mathbb{E}X-\epsilon\right)\leq\exp\left(-t\,\operatorname{kl}(\mathbb{E}X-\epsilon,\mathbb{E}X)\right).$$

In particular this implies that with probability at least $1-\delta$:

$$\mathbb{E}X \leq \max\left\{q \in [0,1] : \mathrm{kl}\left(\frac{1}{t}\sum_{s=1}^{t}X_s,q\right) \leq \frac{\log \delta^{-1}}{t}\right\}$$

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$egin{aligned} &I_t \in \operatorname*{argmax}_{1 \leq i \leq d} \max iggl\{ q \in [0,1]: \ & ext{ kl} \left(rac{1}{\mathcal{T}_i(t-1)} \sum_{s=1}^{\mathcal{T}_i(t-1)} X_{i,s}, q
ight) \leq rac{(1+\epsilon)\log t}{\mathcal{T}_i(t-1)} iggr\}. \end{aligned}$$

Garivier and Cappé proved the following regret bound for *n* large enough:

$$R_n \leq \sum_{i:\Delta_i>0} (1+2\epsilon) rac{\Delta_i}{\mathrm{kl}(\mu_i,\mu^*)} \log n$$

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$egin{aligned} &I_t \in \operatorname*{argmax}_{1 \leq i \leq d} \max iggl\{ q \in [0,1]: \ & ext{ kl} \left(rac{1}{\mathcal{T}_i(t-1)} \sum_{s=1}^{\mathcal{T}_i(t-1)} X_{i,s}, q
ight) \leq rac{(1+\epsilon)\log t}{\mathcal{T}_i(t-1)} iggr\}. \end{aligned}$$

Garivier and Cappé proved the following regret bound for *n* large enough:

$$R_n \leq \sum_{i:\Delta_i>0} (1+2\epsilon) rac{\Delta_i}{\mathrm{kl}(\mu_i,\mu^*)} \log n$$

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$\begin{split} I_t &\in \operatornamewithlimits{argmax}_{1 \leq i \leq d} \max \bigg\{ q \in [0,1] : \\ & \operatorname{kl} \left(\frac{1}{T_i(t-1)} \sum_{s=1}^{T_i(t-1)} X_{i,s}, q \right) \leq \frac{(1+\epsilon)\log t}{T_i(t-1)} \bigg\}. \end{split}$$

Garivier and Cappé proved the following regret bound for n large enough:

$${{R}_{n}}\leq {\displaystyle \sum_{i:{\Delta _{i}}>0}}{\left({1+2\epsilon }
ight)rac{{{\Delta _{i}}}}{{{
m{kl}}\left({{\mu _{i}},{\mu ^{*}}}
ight)}}\log n}$$

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

• Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.

- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).

• $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_i \in [0, 1]$.
- Let $\pi_{i,t}$ be the posterior distribution for μ_i at the t^{th} round.
- Let $\theta_{i,t} \sim \pi_{i,t}$ (independently from the past given $\pi_{i,t}$).
- $I_t \in \operatorname{argmax}_{i=1,\ldots,d} \theta_{i,t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

The standard UCB works for all σ^2 - subgaussian distributions (not only bounded distributions), i.e. such that

$$\mathbb{E}\exp\left(\lambda(X-\mathbb{E}X)\right)\leq rac{\sigma^2\lambda^2}{2}, orall\lambda\in\mathbb{R}.$$

It is easy to see that this is equivalent to

 $\exists \alpha > 0 \text{ s.t. } \mathbb{E} \exp(\alpha X^2) < +\infty.$

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

The standard UCB works for all σ^2 - subgaussian distributions (not only bounded distributions), i.e. such that

$$\mathbb{E}\exp\left(\lambda(X-\mathbb{E}X)
ight)\leq rac{\sigma^2\lambda^2}{2},orall\lambda\in\mathbb{R}.$$

It is easy to see that this is equivalent to

 $\exists \alpha > 0 \text{ s.t. } \mathbb{E} \exp(\alpha X^2) < +\infty.$

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

The standard UCB works for all σ^2 - subgaussian distributions (not only bounded distributions), i.e. such that

$$\mathbb{E}\exp\left(\lambda(X-\mathbb{E}X)
ight)\leq rac{\sigma^2\lambda^2}{2},orall\lambda\in\mathbb{R}.$$

It is easy to see that this is equivalent to

 $\exists \alpha > 0 \text{ s.t. } \mathbb{E} \exp(\alpha X^2) < +\infty.$

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

Lemma

Let $X, X_1, ..., X_n$ be i.i.d random variables such that $\mathbb{E}(X - \mathbb{E}X)^2 \leq 1$. Let $\delta \in (0, 1)$, $k = 8 \log \delta^{-1}$ and $N = \frac{n}{8 \log \delta^{-1}}$. Then with probability at least $1 - \delta$, $\mathbb{E}X \leq median\left(\frac{1}{N}\sum_{s=1}^{N} X_s, ..., \frac{1}{N}\sum_{s=(k-1)N+1}^{kN} X_s\right) + 8\sqrt{\frac{8\log(\delta^{-1})}{n}}$.

Lemma

Let $X, X_1, ..., X_n$ be i.i.d random variables such that $\mathbb{E}(X - \mathbb{E}X)^2 \leq 1$. Let $\delta \in (0, 1)$, $k = 8 \log \delta^{-1}$ and $N = \frac{n}{8 \log \delta^{-1}}$. Then with probability at least $1 - \delta$, $\mathbb{E}X \leq median\left(\frac{1}{N}\sum_{s=1}^{N}X_s, ..., \frac{1}{N}\sum_{s=(k-1)N+1}^{kN}X_s\right) + 8\sqrt{\frac{8\log(\delta^{-1})}{n}}$.

Lemma

Let $X, X_1, ..., X_n$ be i.i.d random variables such that $\mathbb{E}(X - \mathbb{E}X)^2 \leq 1$. Let $\delta \in (0, 1)$, $k = 8 \log \delta^{-1}$ and $N = \frac{n}{8 \log \delta^{-1}}$. Then with probability at least $1 - \delta$,

$$\mathbb{E}X \leq median\left(\frac{1}{N}\sum_{s=1}^{N}X_s, \dots, \frac{1}{N}\sum_{s=(k-1)N+1}^{kN}X_s\right) + 8\sqrt{\frac{8\log(\delta^{-1})}{n}}.$$

Lemma

Let $X, X_1, ..., X_n$ be i.i.d random variables such that $\mathbb{E}(X - \mathbb{E}X)^2 \leq 1$. Let $\delta \in (0, 1)$, $k = 8 \log \delta^{-1}$ and $N = \frac{n}{8 \log \delta^{-1}}$. Then with probability at least $1 - \delta$,

$$\mathbb{E}X \leq median\left(\frac{1}{N}\sum_{s=1}^{N}X_s,\ldots,\frac{1}{N}\sum_{s=(k-1)N+1}^{kN}X_s\right) + 8\sqrt{\frac{8\log(\delta^{-1})}{n}}.$$

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and Lugosi [2012]:

$$I_t \in \underset{1 \le i \le d}{\operatorname{argmax}} \operatorname{median} \left(\frac{1}{N_{i,t}} \sum_{s=1}^{N_{i,t}} X_{i,s}, \dots, \frac{1}{N_{i,t}} \sum_{s=(k_t-1)N_{i,t}+1}^{k_t N_{i,t}} X_{i,s} \right) + 32 \sqrt{\frac{\log t}{T_i(t-1)}},$$

with $k_t = 16 \log t$ and $N_{i,t} = \frac{T_i(t-1)}{16 \log t}$. The following regret bound can be proved for any set of distributions with variance bounded by 1:

$$R_n \leq c \sum_{i:\Delta_i>0} \frac{\log n}{\Delta_i}.$$

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and Lugosi [2012]:

$$I_t \in \underset{1 \le i \le d}{\operatorname{argmax}} \operatorname{median} \left(\frac{1}{N_{i,t}} \sum_{s=1}^{N_{i,t}} X_{i,s}, \dots, \frac{1}{N_{i,t}} \sum_{s=(k_t-1)N_{i,t}+1}^{k_t N_{i,t}} X_{i,s} \right) + 32 \sqrt{\frac{\log t}{T_i(t-1)}},$$

with $k_t = 16 \log t$ and $N_{i,t} = \frac{T_i(t-1)}{16 \log t}$. The following regret bound can be proved for any set of distributions with variance bounded by 1:

$$R_n \leq c \sum_{i:\Delta_i>0} \frac{\log n}{\Delta_i}.$$

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_n \leq c\sqrt{nd \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_n \geq \frac{1}{20}\sqrt{nd}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ* is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_n \leq c \frac{d}{\Delta} \log^2(n)$ in the stochastic setting, and $R_n \leq c \sqrt{dn} \log^3(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is ⊖(n^{2/3}).

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_n \leq c\sqrt{nd \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_n \geq \frac{1}{20}\sqrt{nd}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^* is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_n \leq c \frac{d}{\Delta} \log^2(n)$ in the stochastic setting, and $R_n \leq c \sqrt{dn} \log^3(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is Θ(n^{2/3}).

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_n \leq c\sqrt{nd \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_n \geq \frac{1}{20}\sqrt{nd}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^* is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_n \leq c \frac{d}{\Delta} \log^2(n)$ in the stochastic setting, and $R_n \leq c \sqrt{dn} \log^3(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is Θ(n^{2/3}).

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_n \leq c\sqrt{nd \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_n \geq \frac{1}{20}\sqrt{nd}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^* is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_n \leq c \frac{d}{\Delta} \log^2(n)$ in the stochastic setting, and $R_n \leq c \sqrt{dn} \log^3(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is Θ(n^{2/3}).

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_n \leq c\sqrt{nd \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_n \geq \frac{1}{20}\sqrt{nd}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^* is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_n \leq c \frac{d}{\Delta} \log^2(n)$ in the stochastic setting, and $R_n \leq c \sqrt{dn} \log^3(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is Θ(n^{2/3}).

The regret is defined as:

$$R_n = n \sup_{x \in \mathcal{X}} f(x) - \mathbb{E} \sum_{t=1}^n f(x_t).$$

The regret is defined as:

$$R_n = n \sup_{x \in \mathcal{X}} f(x) - \mathbb{E} \sum_{t=1}^n f(x_t).$$

The regret is defined as:

$$R_n = n \sup_{x \in \mathcal{X}} f(x) - \mathbb{E} \sum_{t=1}^n f(x_t).$$

The regret is defined as:

$$R_n = n \sup_{x \in \mathcal{X}} f(x) - \mathbb{E} \sum_{t=1}^n f(x_t).$$

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{\alpha})$$
 as $x \to x^*$.

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y) = ||x - y||^{\beta}$.

- Known smoothness: β = α. R_n = O(√n), i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$.

$$R_n = \tilde{O}(n^{(d+1)/(d+2)})$$
 where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^lpha)$$
 as $x o x^*.$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$.

 $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$. $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{2} - \frac{1}{\alpha}\right)$
- Smoothness overestimated: β > α. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*$.

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$.

$$R_n = \tilde{O}(n^{(d+1)/(d+2)})$$
 where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.

 $\mathcal{X} = [0, 1]^D$, $\alpha \ge 0$ and mean-payoff function f locally " α -smooth" around (any of) its maximum x^* (in finite number):

$$f(x^*) - f(x) = \Theta(||x - x^*||^{lpha})$$
 as $x o x^*.$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y) = ||x - y||^{\beta}$.

- Known smoothness: $\beta = \alpha$. $R_n = \tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta < \alpha$.

 $R_n = \tilde{O}(n^{(d+1)/(d+2)})$ where $d = D\left(\frac{1}{\beta} - \frac{1}{\alpha}\right)$.

 Smoothness overestimated: β > α. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.

Path planning

Adversary

Player

Adversary

 $\cdots \rightarrow V_t \in \mathcal{S}, \text{ loss suffered: } \ell_t^\top V_t$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T \iota$$

$$\rightsquigarrow \ell_t \in \mathbb{R}^d_+$$

 $\cdots \rightarrow V_t \in \mathcal{S}, \text{ loss suffered: } \ell_t^\top V_t$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

÷

$$R_n = \mathbb{E} \sum_{t=1}^n \ell_t^T V_t - \min_{u \in S} \mathbb{E} \sum_{t=1}^n \ell_t^T u$$

Set of concepts $S \subset \{0,1\}^d$

Spanning trees

k-sized intervals

Parallel bandits

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t} (VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t}(VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_{i=1}} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim P_t}(VV^T)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in S: V_i=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^\top \ell_t$, with $P_t = \mathbb{E}_{V \sim P_t}(VV^\top)$ in the bandit game.

- $\tilde{\ell}_t = \ell_t$ in the full information game,
- $\tilde{\ell}_{i,t} = \frac{\ell_{i,t}}{\sum_{V \in \mathcal{S}: v_{i}=1} p_t(V)} V_{i,t}$ in the semi-bandit game,
- $\tilde{\ell}_t = P_t^+ V_t V_t^T \ell_t$, with $P_t = \mathbb{E}_{V \sim p_t}(VV^T)$ in the bandit game.

Definition (L_{∞})

We say that the adversary satisfies the L_{∞} assumption: if $\|\ell_t\|_{\infty} \leq 1$ for all t = 1, ..., n.

Definition (L_2)

We say that the adversary satisfies the L_2 assumption: if $\ell_t^T v \leq 1$ for all t = 1, ..., n and $v \in S$.

Definition (L_{∞})

We say that the adversary satisfies the L_{∞} assumption: if $\|\ell_t\|_{\infty} \leq 1$ for all t = 1, ..., n.

Definition (L_2)

We say that the adversary satisfies the L_2 assumption: if $\ell_t^T v \leq 1$ for all t = 1, ..., n and $v \in S$.

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

• In the full information game, against L_2 adversaries, we have (for some η)

 $R_n \leq \sqrt{2dn},$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

• Audibert, Bubeck and Lugosi [2011] showed that, for any η , there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} adversary such that:

$$R_n \ge 0.02 \ d^{3/2} \sqrt{n}.$$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

• In the full information game, against L_2 adversaries, we have (for some η)

 $R_n \leq \sqrt{2dn},$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

 $R_n \leq d^{3/2}\sqrt{2n}.$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

• Audibert, Bubeck and Lugosi [2011] showed that, for any η , there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} adversary such that:

 $R_n \ge 0.02 \ d^{3/2} \sqrt{n}.$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

• In the full information game, against L_2 adversaries, we have (for some η)

$$R_n \leq \sqrt{2dn},$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

 Audibert, Bubeck and Lugosi [2011] showed that, for any η, there exists a subset S ⊂ {0,1}^d and an L_∞ adversary such that:

 $R_n \ge 0.02 \ d^{3/2} \sqrt{n}.$

$$p_t(v) = \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T v\right)}{\sum_{u \in \mathcal{S}} \exp\left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_s^T u\right)}$$

• In the full information game, against L_2 adversaries, we have (for some η)

$$R_n \leq \sqrt{2dn},$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

• Thus against L_{∞} adversaries we have

$$R_n \leq d^{3/2}\sqrt{2n}.$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

 Audibert, Bubeck and Lugosi [2011] showed that, for any η, there exists a subset S ⊂ {0,1}^d and an L_∞ adversary such that:

$$R_n \ge 0.02 \ d^{3/2}\sqrt{n}.$$

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^d with nonempty interior $int(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F : \mathcal{D} \to \mathbb{R}$ such that

- *F* is strictly convex and admits continuous first partial derivatives on int(*D*),
- For any $u \in \partial \mathcal{D}$, for any $v \in int(\mathcal{D})$, we have

$$\lim_{s\to 0,s>0} (u-v)^T \nabla F((1-s)u+sv) = +\infty.$$

Bregman divergence

Definition

The Bregman divergence $D_F : \mathcal{D} \times int(\mathcal{D})$ associated to a Legendre function F is defined by

$$D_F(u,v) = F(u) - F(v) - (u-v)^T \nabla F(v).$$

Definition

The Legendre transform of F is defined by

$$F^*(u) = \sup_{x \in \mathcal{D}} x^T u - F(x).$$

Key property for Legendre functions: $\nabla F^* = (\nabla F)^{-1}$.

Parameter: F Legendre on $\mathcal{D} \supset Conv(\mathcal{S})$ (1) $w'_{t+1} \in \mathcal{D}$: $w_{t+1}' = \nabla F^* \left(\nabla F(w_t) - \tilde{\ell}_t \right)$ \mathcal{D} w'_{t+1} Wt Conv(S

A little bit of advertising 2

S. Bubeck

Theory of Convex Optimization for Machine Learning arXiv:1405.4980

Theorem

If F admits a Hessian $\nabla^2 F$ always invertible then,

$${\mathsf R}_n \ \lessapprox \ {\mathsf diam}_{D_{\mathsf F}}({\mathcal S}) \ + \ \mathbb{E} \sum_{t=1}^n ilde{\ell}_t^{\mathsf T} \left(
abla^2 {\mathsf F}({\mathsf w}_t)
ight)^{-1} ilde{\ell}_t.$$

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{\eta} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{n} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{n} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

 $\mathcal{D} = [0, +\infty)^d$, $F(x) = \frac{1}{n} \sum_{i=1}^d x_i \log x_i$

Full Info: Exp

Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW Kale, Reyzin and Schapire [2010]

$$\mathcal{D} = [0, +\infty)^d$$
, $F(x) = \sum_{i=1}^d \int_0^{x_i} \psi^{-1}(s) ds$

INF, Audibert and Bubeck [2009]

 $\left\{egin{array}{l} \psi({m x})=\exp(\eta{m x}):{\sf LinExp}\ \psi({m x})=(-\eta{m x})^{-q},q>1:{\sf LinPoly} \end{array}
ight.$

$$\mathcal{D}=[0,+\infty)^d$$
, $F(x)=\sum_{i=1}^d\int_0^{x_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

$$\mathcal{D}=[0,+\infty)^d$$
, $\mathsf{F}(\mathsf{x})=\sum_{i=1}^d\int_0^{\mathsf{x}_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

$$\mathcal{D}=[0,+\infty)^d$$
, $\mathsf{F}(\mathsf{x})=\sum_{i=1}^d\int_0^{\mathsf{x}_i}\psi^{-1}(s)ds$

INF, Audibert and Bubeck [2009]

$$\begin{cases} \psi(x) = \exp(\eta x) : \mathsf{LinExp} \\ \psi(x) = (-\eta x)^{-q}, q > 1 : \mathsf{LinPoly} \end{cases}$$

Different instances of OSMD: Follow the regularized leader

 $\mathcal{D} = Conv(\mathcal{S})$, then

$$w_{t+1} \in \operatorname*{argmin}_{w \in \mathcal{D}} \left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w + F(w) \right)$$

Particularly interesting choice: *F* self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Different instances of OSMD: Follow the regularized leader

 $\mathcal{D} = Conv(\mathcal{S})$, then

$$w_{t+1} \in \operatorname*{argmin}_{w \in \mathcal{D}} \left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w + F(w) \right)$$

Particularly interesting choice: *F* self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008] Theorem (Koolen, Warmuth and Kivinen [2010])

In the full information game, the LinExp strategy (with well-chosen parameters) satisfies for any concept class $S \subset \{0,1\}^d$ and any L_{∞} -adversary:

$$R_n \leq d\sqrt{2n}.$$

Moreover for any strategy, there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} -adversary such that:

$$R_n \geq 0.008 \ d\sqrt{n}.$$

Theorem (Audibert, Bubeck and Lugosi [2011])

In the semi-bandit game, the LinExp strategy (with well-chosen parameters) satisfies for any concept class $S \subset \{0,1\}^d$ and any L_{∞} -adversary:

$$R_n \leq d\sqrt{2n}.$$

Moreover for any strategy, there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} -adversary such that:

$$R_n \geq 0.008 \ d\sqrt{n}.$$

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on S to control third order error terms in the regret bound.
- Second, the control of the quadratic term $\tilde{\ell}_t^T (\nabla^2 F(w_t))^{-1} \tilde{\ell}_t$ is much more involved than previously.

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on *S* to control third order error terms in the regret bound.
- Second, the control of the quadratic term $\tilde{\ell}_t^T (\nabla^2 F(w_t))^{-1} \tilde{\ell}_t$ is much more involved than previously.

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on *S* to control third order error terms in the regret bound.
- Second, the control of the quadratic term $\tilde{\ell}_t^T (\nabla^2 F(w_t))^{-1} \tilde{\ell}_t$ is much more involved than previously.

Theorem (John's Theorem)

Let $\mathcal{K} \subset \mathbb{R}^d$ be a convex set. If the ellipsoid \mathcal{E} of minimal volume enclosing \mathcal{K} is the unit ball in some norm derived from a scalar product $\langle \cdot, \cdot \rangle$, then there exists $M \leq d(d+1)/2 + 1$ contact points u_1, \ldots, u_M between \mathcal{E} and \mathcal{K} , and $\mu \in \Delta_M$ (the simplex of dimension M - 1), such that

$$x = d \sum_{i=1}^{M} \mu_i \langle x, u_i \rangle u_i, \forall x \in \mathbb{R}^d.$$

Theorem (Audibert, Bubeck and Lugosi [2011], Bubeck, Cesa-Bianchi and Kakade [2012])

In the bandit game, the Exp2 strategy with John's exploration satisfies for any concept class $S \subset \{0,1\}^d$ and any L_{∞} -adversary:

 $R_n \leq 4d^2\sqrt{n}$

and respectively $R_n \leq 4d\sqrt{n}$ for an L_2 -adversary. Moreover for any strategy, there exists a subset $S \subset \{0,1\}^d$ and an L_{∞} -adversary such that:

$$R_n \ge 0.01 \ d^{3/2} \sqrt{n}.$$

For L₂-adversaries the lower bound is 0.05 min $(n, d\sqrt{n})$.

Conjecture: for an L_{∞} -adversary the correct order of magnitude is $d^{3/2}\sqrt{n}$ and it can be attained with OSMD.