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Some Applications

Computer Go Brain computer interface Medical trials

Packets routing Ads placement Dynamic allocation



A little bit of advertising

S. Bubeck and N. Cesa-Bianchi.
Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems.
Foundations and Trends in Machine Learning, Vol 5: No 1,
1-122, 2012.



Notation

For each round t = 1, 2, . . . , n;

1 The player chooses an arm It ∈ {1, . . . , d}, possibly with the
help of an external randomization.

2 Simultaneously the adversary chooses a loss vector
`t = (`1,t , . . . , `d ,t) ∈ [0, 1]d .

3 The player incurs the loss `It ,t , and observes:

The loss vector `t in the full information setting.
Only the loss incured `It ,t in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the
regret:

Rn = E
n∑

t=1

`It ,t − min
i=1,...,d

E
n∑

t=1

`i ,t .
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Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw It at random from pt where

pt(i) =
exp

(
−η
∑t−1

s=1 `i ,s

)
∑d

j=1 exp
(
−η
∑t−1

s=1 `j ,s

)
Theorem (Cesa-Bianchi, Freund , Haussler, Helmbold, Schapire
and Warmuth [1997])

Exp satisfies

Rn ≤
√

n log d

2
.

Moreover for any strategy,

sup
adversaries

Rn ≥
√

n log d

2
+ o(

√
n log d).
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The one-slide-proof

wt(i) = exp

(
−η

t−1∑
s=1

`i ,s

)
, Wt =

d∑
i=1

wt(i), pt(i) =
wt(i)

Wt

log
Wn+1

W1
= log

(
1

d

d∑
i=1

wn+1(i)

)
≥ log

(
1

d
max

i
wn+1(i)

)

= −ηmin
i

n∑
t=1

`i ,t − log d

log
Wn+1

W1
=

n∑
t=1

log
Wt+1

Wt
=

n∑
t=1

log

(
d∑

i=1

wt(i)

Wt
exp(−η`i ,t)

)

=
n∑

t=1

log (E exp(−η`It ,t ))

≤
n∑

t=1

(
−ηE`It ,t +

η2

8

)
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Magic trick for bandit feedback

˜̀
i ,t =

`i ,t
pt(i)

1It=i ,

is an unbiased estimate of `i ,t . We call Exp3 the Exp strategy run
on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])

Exp3 satisfies:
Rn ≤

√
2nd log d .

Moreover for any strategy,

sup
adversaries

Rn ≥
1

4

√
nd + o(

√
nd).
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High probability bounds
What about bounds directly on the true regret

n∑
t=1

`It ,t − min
i=1,...,d

n∑
t=1

`i ,t ?

Auer et al. [2003] proposed Exp3.P:

pt(i) = (1− γ)
exp

(
−η
∑t−1

s=1
˜̀
i ,s

)
∑d

j=1 exp
(
−η
∑t−1

s=1
˜̀
j ,s

) +
γ

d
,

where
˜̀
i ,t =

`i ,t
pt(i)

1It=i +
β

pt(i)
.

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])

Exp3.P satisfies with probability at least 1− δ:

n∑
t=1

`It ,t − min
i=1,...,d

n∑
t=1

`i ,t ≤ 5.15
√

nd log(dδ−1).
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Other types of normalization

INF (Implicitly Normalized Forecaster) is based on a potential
function ψ : R∗− → R∗+ increasing, convex, twice continuously
differentiable, and such that (0, 1] ⊂ ψ(R∗−).

At each time step INF computes the new probability
distribution as follows:

pt(i) = ψ

(
Ct −

t−1∑
s=1

˜̀
i ,s

)
,

where Ct is the unique real number such that
∑d

i=1 pt(i) = 1.

ψ(x) = exp(ηx) + γ
d corresponds exactly to the Exp3 strategy.

ψ(x) = (−ηx)−1/2 + γ
d is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

Quadratic INF satisfies: Rn ≤ 2
√

2nd .
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Extension: contextual bandits

Contextual bandits: at each time step t one receives a context
st ∈ S, and one wants to perform as well as the best mapping
from contexts to arms:

RSn = E
n∑

t=1

`It ,t − min
g :S→{1,...,d}

E
n∑

t=1

`g(st),t .

A related problem is bandit with experts advice: N experts are
playing the game, and the player observes their actions ξkt ,
k = 1, . . . ,N. One wants to compete with the best expert:

RN
n = E

n∑
t=1

`It ,t − min
k∈{1,...,N}

E
n∑

t=1

`ξkt ,t .

With the bandit feedback `It ,t one can build an estimate for

the loss of expert k as ˜̀k
t =

`It ,t1It=ξkt
pt(It)

. Playing Exp on the set
of experts with the above loss estimate yields
RN
n ≤

√
2nd logN.
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Extension: partial monitoring

Partial monitoring: the received feedback at time t is some
signal S(It , `t), see Cesa-Bianchi and Lugosi [2006].

A simple interpolation between full info. and bandit feedback
is the partial monitoring setting of Mannor and Shamir [2011]:
S(It , `t) = {`i ,t , i ∈ N (It)} where
N : {1, . . . , d} → P({1, . . . , d}) is some known
neighboorhood mapping. A natural loss estimate in that case
is

˜̀
i ,t =

`i ,t1i∈N (It)∑
j∈N (i) pt(j)

.

Mannor and Shamir [2011] proved that Exp with the above
estimate has a regret of order

√
αn where α is the

independence number of the graph associated to N .
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Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).



Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).



Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).



Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).



Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses (`t)1≤t≤n is a sequence of i.i.d random
variables.

For historical reasons in this setting we consider gains rather than
losses and we introduce different notation:

Let νi be the unknown reward distribution underlying arm i ,
µi the mean of νi , µ

∗ = max1≤i≤d µi and ∆i = µ∗ − µi .
Let Xi ,s ∼ νi be the reward obtained when pulling arm i for
the sth time, and Ti (t) =

∑t
s=1 1Is=i the number of times

arm i was pulled up to time t.

Thus here

Rn = nµ∗ − E
n∑

t=1

µIt =
d∑

i=1

∆iETi (n).



Optimism in face of uncertainty

General principle: given some observations from an unknown
environment, build (with some probabilistic argument) a set of
possible environments Ω, then act as if the real environment was
the most favorable one in Ω.

Application to stochastic bandits: given the past rewards, build
confidence intervals for the means (µi ) (in particular build upper
confidence bounds), then play the arm with the highest upper
confidence bound.
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UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X ,X1, . . . ,Xt be i.i.d random variables in [0, 1], then with
probability at least 1− δ,

EX ≤ 1

t

t∑
s=1

Xs +

√
log δ−1

2t
.

This directly suggests the famous UCB strategy of Auer,
Cesa-Bianchi and Fischer [2002]:

It ∈ argmax
1≤i≤d

1

Ti (t − 1)

Ti (t−1)∑
s=1

Xi ,s +

√
2 log t

Ti (t − 1)
.

Auer et al. proved the following regret bound:

Rn ≤
∑

i :∆i>0

10 log n

∆i
.
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Distribution-dependent lower bound

For any p, q ∈ [0, 1], let

kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. ∀a > 0, we have
ETi (n) = o(na) if ∆i > 0. Then for any Bernoulli reward
distributions,

lim inf
n→+∞

Rn

log n
≥
∑

i :∆i>0

∆i

kl(µi , µ∗)
.

Note that
1

2∆i
≥ ∆i

kl(µi , µ∗)
≥ µ∗(1− µ∗)

2∆i
.
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KL-UCB

Theorem (Chernoff’s inequality)

Let X ,X1, . . . ,Xt be i.i.d random variables in [0, 1], then

P

(
1

t

t∑
s=1

Xs ≤ EX − ε

)
≤ exp (−t kl(EX − ε,EX )) .

In particular this implies that with probability at least 1− δ:

EX ≤ max

{
q ∈ [0, 1] : kl

(
1

t

t∑
s=1

Xs , q

)
≤ log δ−1

t

}
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KL-UCB

Thus Chernoff’s bound suggests the KL-UCB strategy of Garivier
and Cappé [2011] (see also Honda and Takemura [2010], Maillard,
Munos and Stoltz [2011]) :

It ∈ argmax
1≤i≤d

max

{
q ∈ [0, 1] :

kl

 1

Ti (t − 1)

Ti (t−1)∑
s=1

Xi ,s , q

 ≤ (1 + ε) log t

Ti (t − 1)

}
.

Garivier and Cappé proved the following regret bound for n large
enough:

Rn ≤
∑

i :∆i>0

(1 + 2ε)
∆i

kl(µi , µ∗)
log n.
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A non-UCB strategy: Thompson’s sampling

In Thompson [1933] the following strategy was proposed for the
case of Bernoulli distributions:

Assume a uniform prior on the parameters µi ∈ [0, 1].

Let πi ,t be the posterior distribution for µi at the tth round.

Let θi ,t ∼ πi ,t (independently from the past given πi ,t).

It ∈ argmaxi=1,...,d θi ,t .

The first theoretical guarantee for this strategy was provided in
Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos
[2012] it was proved that it attains essentially the same regret than
KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

For any prior distribution Thompson Sampling has a Bayesian
regret smaller than 14

√
nK .
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Heavy-tailed distributions

The standard UCB works for all σ2 - subgaussian distributions (not
only bounded distributions), i.e. such that

E exp (λ(X − EX )) ≤ σ2λ2

2
,∀λ ∈ R.

It is easy to see that this is equivalent to

∃α > 0 s.t. E exp(αX 2) < +∞.

What happens for distributions with heavier tails? Can we get
logarithmic regret if the distributions only have a finite variance?
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Median of means, Alon, Gibbons, Matias and Szegedy
[2002]

Lemma

Let X ,X1, . . . ,Xn be i.i.d random variables such that
E(X − EX )2 ≤ 1. Let δ ∈ (0, 1), k = 8 log δ−1 and N = n

8 log δ−1 .
Then with probability at least 1− δ,

EX ≤ median

 1

N

N∑
s=1

Xs , . . . ,
1

N

kN∑
s=(k−1)N+1

Xs

+ 8

√
8 log(δ−1)

n
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Robust UCB

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and
Lugosi [2012]:

It ∈ argmax
1≤i≤d

median

 1

Ni ,t

Ni,t∑
s=1

Xi ,s , . . . ,
1

Ni ,t

ktNi,t∑
s=(kt−1)Ni,t+1

Xi ,s


+ 32

√
log t

Ti (t − 1)
,

with kt = 16 log t and Ni ,t = Ti (t−1)
16 log t . The following regret bound

can be proved for any set of distributions with variance bounded by
1:

Rn ≤ c
∑

i :∆i>0

log n

∆i
.
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More extensions

Slowly changing distributions over time, e.g. Garivier and
Moulines (2008).

Distribution-free regret: UCB has a regret always bounded as
Rn ≤ c

√
nd log n. Furthermore one can prove that for any

strategy there exists a set of distributions such that
Rn ≥ 1

20

√
nd . The extraneous logarithmic factor can be

removed with MOSS (Audibert and Bubeck (2009)).

If µ∗ is known then a constant regret is achievable, Lai and
Robbins (1987), Bubeck, Perchet and Rigollet (2013).

It is possible to design a strategy with simultaneously
Rn ≤ c d

∆ log2(n) in the stochastic setting, and

Rn ≤ c
√
dn log3(n) in the adversarial setting, Bubeck and

Slivkins (2012).

Bandits with switching cost, Dekel, Ding, Koren and Peres
(2013): optimal regret is Θ(n2/3).
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X -armed bandits

Stochastic multi-armed bandit where {1, . . . ,K} is replaced by a
metric space X . At time t, select xt ∈ X , then receive a random
variable Yt ∈ [0, 1] such that E[Yt |xt ] = f (xt).

The regret is defined as:

Rn = n sup
x∈X

f (x)− E
n∑

t=1

f (xt).

The standard assumption in this context if that f is Lipschitz.
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2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal,
2008) using the ”metric” ρ(x , y) = ||x − y ||β.

Known smoothness: β = α. Rn = Õ(
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UCT (Kocsis and Szepesvári 2006) corresponds to β = +∞.



Path planning



Combinatorial prediction game

Adversary

Player



Combinatorial prediction game

Adversary

Player



Combinatorial prediction game

Adversary

Player



Combinatorial prediction game

Adversary

Player

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7



Combinatorial prediction game

Adversary

Player

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7

loss suffered: `2 + `7 + . . .+ `d



Combinatorial prediction game

Adversary

Player

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7

loss suffered: `2 + `7 + . . .+ `d

Feedback:


Full Info: `1, `2, . . . , `d



Combinatorial prediction game

Adversary

Player

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7

loss suffered: `2 + `7 + . . .+ `d

Feedback:


Full Info: `1, `2, . . . , `d
Semi-Bandit: `2, `7, . . . , `d
Bandit: `2 + `7 + . . .+ `d



Combinatorial prediction game

Adversary

Player

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7

loss suffered: `2 + `7 + . . .+ `d

Feedback:


Full Info: `1, `2, . . . , `d
Semi-Bandit: `2, `7, . . . , `d
Bandit: `2 + `7 + . . .+ `d



Notation

S ⊂ {0, 1}d

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 `t ∈ Rd
+

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 Vt ∈ S, loss suffered: `Tt Vt

Rn = E
n∑

t=1

`Tt Vt −min
u∈S

E
n∑

t=1

`Tt u



Notation

S ⊂ {0, 1}d

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 `t ∈ Rd
+

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 Vt ∈ S, loss suffered: `Tt Vt

Rn = E
n∑

t=1

`Tt Vt −min
u∈S

E
n∑

t=1

`Tt u



Notation

S ⊂ {0, 1}d

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 `t ∈ Rd
+

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 Vt ∈ S, loss suffered: `Tt Vt

Rn = E
n∑

t=1

`Tt Vt −min
u∈S

E
n∑

t=1

`Tt u



Notation

S ⊂ {0, 1}d

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 `t ∈ Rd
+

`2 `6 `d−1

`1

`4

`5

`9

`d−2

`d`3

`8

`7 Vt ∈ S, loss suffered: `Tt Vt

Rn = E
n∑

t=1

`Tt Vt −min
u∈S

E
n∑

t=1

`Tt u



Set of concepts S ⊂ {0, 1}d

Paths k-sets Matchings

k-sized intervals

Spanning trees

Parallel bandits



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.



Key idea

Vt ∼ pt , pt ∈ ∆(S)

Then, unbiased estimate ˜̀
t of the loss `t :

˜̀
t = `t in the full information game,

˜̀
i ,t =

`i,t∑
V∈S:Vi=1 pt(V )Vi ,t in the semi-bandit game,

˜̀
t = P+

t VtV
T
t `t , with Pt = EV∼pt (VV

T ) in the bandit game.



Loss assumptions

Definition (L∞)

We say that the adversary satisfies the L∞ assumption: if
‖`t‖∞ ≤ 1 for all t = 1, . . . , n.

Definition (L2)

We say that the adversary satisfies the L2 assumption: if `Tt v ≤ 1
for all t = 1, . . . , n and v ∈ S.
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Expanded Exponentially weighted average forecaster
(Exp2)

pt(v) =
exp

(
−η
∑t−1

s=1
˜̀T
s v
)

∑
u∈S exp

(
−η
∑t−1

s=1
˜̀T
s u
)

In the full information game, against L2 adversaries, we have
(for some η)

Rn ≤
√

2dn,

which is the optimal rate, Dani, Hayes and Kakade [2008].

Thus against L∞ adversaries we have

Rn ≤ d3/2
√

2n.

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

Audibert, Bubeck and Lugosi [2011] showed that, for any η,
there exists a subset S ⊂ {0, 1}d and an L∞ adversary such
that:

Rn ≥ 0.02 d3/2√n.
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Legendre function

Definition

Let D be a convex subset of Rd with nonempty interior int(D) and
boundary ∂D. We call Legendre any function F : D → R such that

F is strictly convex and admits continuous first partial
derivatives on int(D),

For any u ∈ ∂D, for any v ∈ int(D), we have

lim
s→0,s>0

(u − v)T∇F
(
(1− s)u + sv

)
= +∞.
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Bregman divergence

Definition

The Bregman divergence DF : D × int(D) associated to a
Legendre function F is defined by

DF (u, v) = F (u)− F (v)− (u − v)T∇F (v).

Definition

The Legendre transform of F is defined by

F ∗(u) = sup
x∈D

xTu − F (x).

Key property for Legendre functions: ∇F ∗ = (∇F )−1.



Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on D ⊃ Conv(S)

Conv(S)

D

∆(S)

(1) w ′t+1 ∈ D :

w ′t+1 = ∇F ∗
(
∇F (wt)− ˜̀

t

)
(2) wt+1 ∈ argmin

w∈Conv(S)
DF (w ,w ′t+1)

(3) pt+1 ∈ ∆(S) : wt+1 = EV∼pt+1V
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General regret bound for OSMD

Theorem

If F admits a Hessian ∇2F always invertible then,

Rn / diamDF
(S) + E

n∑
t=1

˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t .



Different instances of OSMD: LinExp (Entropy Function)

D = [0,+∞)d , F (x) = 1
η

∑d
i=1 xi log xi

Full Info: Exp

Semi-Bandit=Bandit: Exp3
Auer et al. [2002]



Full Info: Component Hedge
Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Bandit: bad algorithm!
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Different instances of OSMD: LinINF (Exchangeable
Hessian)

D = [0,+∞)d , F (x) =
∑d

i=1

∫ xi
0 ψ−1(s)ds

INF, Audibert and Bubeck [2009]

{
ψ(x) = exp(ηx) : LinExp
ψ(x) = (−ηx)−q, q > 1 : LinPoly
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Different instances of OSMD: Follow the regularized leader

D = Conv(S), then

wt+1 ∈ argmin
w∈D

(
t∑

s=1

˜̀T
s w + F (w)

)

Particularly interesting choice: F self-concordant barrier function,
Abernethy, Hazan and Rakhlin [2008]
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Minimax regret for the full information game

Theorem (Koolen, Warmuth and Kivinen [2010])

In the full information game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S ⊂ {0, 1}d and any
L∞-adversary:

Rn ≤ d
√

2n.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.008 d
√
n.



Minimax regret for the semi-bandit game

Theorem (Audibert, Bubeck and Lugosi [2011])

In the semi-bandit game, the LinExp strategy (with well-chosen
parameters) satisfies for any concept class S ⊂ {0, 1}d and any
L∞-adversary:

Rn ≤ d
√

2n.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.008 d
√
n.



Minimax regret for the bandit game

For the bandit game the situation becomes trickier.

First it appears necessary to add some sort of forced
exploration on S to control third order error terms in the
regret bound.

Second, the control of the quadratic term ˜̀T
t

(
∇2F (wt)

)−1 ˜̀
t

is much more involved than previously.
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John’s distribution

Theorem (John’s Theorem)

Let K ⊂ Rd be a convex set. If the ellipsoid E of minimal volume
enclosing K is the unit ball in some norm derived from a scalar
product 〈·, ·〉, then there exists M ≤ d(d + 1)/2 + 1 contact points
u1, . . . , uM between E and K, and µ ∈ ∆M (the simplex of
dimension M − 1), such that

x = d
M∑
i=1

µi 〈x , ui 〉ui ,∀ x ∈ Rd .



Minimax regret for the bandit game

Theorem (Audibert, Bubeck and Lugosi [2011], Bubeck,
Cesa-Bianchi and Kakade [2012])

In the bandit game, the Exp2 strategy with John’s exploration
satisfies for any concept class S ⊂ {0, 1}d and any L∞-adversary:

Rn ≤ 4d2√n,

and respectively Rn ≤ 4d
√
n for an L2-adversary.

Moreover for any strategy, there exists a subset S ⊂ {0, 1}d and
an L∞-adversary such that:

Rn ≥ 0.01 d3/2√n.

For L2-adversaries the lower bound is 0.05 min(n, d
√
n).

Conjecture: for an L∞-adversary the correct order of magnitude is
d3/2√n and it can be attained with OSMD.


