Tutorial on Bandit Games

Sébastien Bubeck

Microsoft ${ }^{*}$
Research
PRINCETON UNIVERSITY

Online Learning with Full Information

Adversary

Player

Online Learning with Full Information

Adversary

Online Learning with Full Information

Adversary

Online Learning with Full Information

Adversary

Player

Online Learning with Full Information

Adversary

loss suffered: ℓ_{A}

$$
A \in\{1, \ldots, d\}
$$

Player

Online Learning with Full Information

Online Learning with Bandit Feedback

Adversary

Player

Online Learning with Bandit Feedback

Adversary

Player

Online Learning with Bandit Feedback

Adversary \longrightarrow

Player

Online Learning with Bandit Feedback

Player

Online Learning with Bandit Feedback

loss suffered: ℓ_{A}

Player

Online Learning with Bandit Feedback

Computer Go

Packets routing

Brain computer interface

Ads placement

Medical trials

Dynamic allocation

A little bit of advertising

E
S. Bubeck and N. Cesa-Bianchi.

Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.
Foundations and Trends in Machine Learning, Vol 5: No 1, 1-122, 2012.

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t}, t}$, and observes:

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an arm $I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(3) Simultaneously the adversary chooses a loss vector
(3) The player incurs the loss $\ell_{l_{t}, t}$, and observes:

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t, t}}$, and observes:

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t}, t}$, and observes:

- The loss vector l_{t} in the full information setting.
- Only the loss incured $\ell_{I_{t}, t}$ in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t}, t}$, and observes:

- The loss vector ℓ_{t} in the full information setting.

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an arm $I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t}, t}$, and observes:

- The loss vector ℓ_{t} in the full information setting.
- Only the loss incured $\ell_{I_{t}, t}$ in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the regret:

For each round $t=1,2, \ldots, n$;
(1) The player chooses an $\operatorname{arm} I_{t} \in\{1, \ldots, d\}$, possibly with the help of an external randomization.
(2) Simultaneously the adversary chooses a loss vector $\ell_{t}=\left(\ell_{1, t}, \ldots, \ell_{d, t}\right) \in[0,1]^{d}$.
(3) The player incurs the loss $\ell_{\ell_{t}, t}$, and observes:

- The loss vector ℓ_{t} in the full information setting.
- Only the loss incured $\ell_{I_{t}, t}$ in the bandit setting.

Goal: Minimize the cumulative loss incured. We consider the regret:

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{\ell_{t}, t}-\min _{i=1, \ldots, d} \mathbb{E} \sum_{t=1}^{n} \ell_{i, t}
$$

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw I_{t} at random from p_{t} where

$$
p_{t}(i)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j, s}\right)}
$$

Theorem (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [1997])

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw I_{t} at random from p_{t} where

$$
p_{t}(i)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j, s}\right)}
$$

Theorem (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [1997])

Exp satisfies

$$
R_{n} \leq \sqrt{\frac{n \log d}{2}}
$$

Moreover for any strategy,

Exponential Weights (EW, EWA, MW, Hedge, ect)

Draw I_{t} at random from p_{t} where

$$
p_{t}(i)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \ell_{j, s}\right)}
$$

Theorem (Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire and Warmuth [1997])

Exp satisfies

$$
R_{n} \leq \sqrt{\frac{n \log d}{2}}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \sqrt{\frac{n \log d}{2}}+o(\sqrt{n \log d}) .
$$

The one-slide-proof

$$
w_{t}(i)=\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right), \quad w_{t}=\sum_{i=1}^{d} w_{t}(i), \quad p_{t}(i)=\frac{w_{t}(i)}{W_{t}}
$$

The one-slide-proof

$$
\begin{aligned}
w_{t}(i)=\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right), W_{t} & =\sum_{i=1}^{d} w_{t}(i), \quad p_{t}(i)=\frac{w_{t}(i)}{W_{t}} \\
\log \frac{W_{n+1}}{W_{1}}=\log \left(\frac{1}{d} \sum_{i=1}^{d} w_{n+1}(i)\right) & \geq \log \left(\frac{1}{d} \max _{i} w_{n+1}(i)\right) \\
& =-\eta \min _{i} \sum_{t=1}^{n} \ell_{i, t}-\log d
\end{aligned}
$$

The one-slide-proof

$$
\begin{aligned}
& w_{t}(i)=\exp \left(-\eta \sum_{s=1}^{t-1} \ell_{i, s}\right), W_{t}=\sum_{i=1}^{d} w_{t}(i), \quad p_{t}(i)=\frac{w_{t}(i)}{W_{t}} \\
& \log \frac{W_{n+1}}{W_{1}}=\log \left(\frac{1}{d} \sum_{i=1}^{d} w_{n+1}(i)\right) \geq \log \left(\frac{1}{d} \max _{i} w_{n+1}(i)\right) \\
&=-\eta \min _{i} \sum_{t=1}^{n} \ell_{i, t}-\log d \\
& \log \frac{W_{n+1}}{W_{1}}=\sum_{t=1}^{n} \log \frac{W_{t+1}}{W_{t}}=\sum_{t=1}^{n} \log \left(\sum_{i=1}^{d} \frac{w_{t}(i)}{W_{t}} \exp \left(-\eta \ell_{i, t}\right)\right) \\
&=\sum_{t=1}^{n} \log \left(\mathbb{E} \exp \left(-\eta \ell_{l_{t}, t}\right)\right) \\
& \leq \sum_{t=1}^{n}\left(-\eta \mathbb{E} \ell_{l_{t}, t}+\frac{\eta^{2}}{8}\right)
\end{aligned}
$$

Magic trick for bandit feedback

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{t}(i)} \mathbb{1}_{I_{t}=i}
$$

is an unbiased estimate of $\ell_{i, t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire 2003]
Exp3 satisfies:

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{t}(i)} \mathbb{1}_{I_{t}=i}
$$

is an unbiased estimate of $\ell_{i, t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])
Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n d \log d}
$$

Moreover for any strategy,

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{t}(i)} \mathbb{1}_{l_{t}=i}
$$

is an unbiased estimate of $\ell_{i, t}$. We call Exp3 the Exp strategy run on the estimated losses.

Theorem (Auer, Cesa-Bianchi, Freund and Schapire [2003])
Exp3 satisfies:

$$
R_{n} \leq \sqrt{2 n d \log d}
$$

Moreover for any strategy,

$$
\sup _{\text {adversaries }} R_{n} \geq \frac{1}{4} \sqrt{n d}+o(\sqrt{n d}) .
$$

High probability bounds

What about bounds directly on the true regret

$$
\sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{i=1, \ldots, d} \sum_{t=1}^{n} \ell_{i, t} ?
$$

Auer et al. [2003] proposed Exp3.P:

where

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])
Exp3.P satisfies with probability at least $1-\delta$

High probability bounds

What about bounds directly on the true regret

$$
\sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{i=1, \ldots, d} \sum_{t=1}^{n} \ell_{i, t} ?
$$

Auer et al. [2003] proposed Exp3.P:

$$
p_{t}(i)=(1-\gamma) \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j, s}\right)}+\frac{\gamma}{d}
$$

where

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])
Exp3.P satisfies with probability at least $1-\delta$

High probability bounds

What about bounds directly on the true regret

$$
\sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{i=1, \ldots, d} \sum_{t=1}^{n} \ell_{i, t} ?
$$

Auer et al. [2003] proposed Exp3.P:

$$
p_{t}(i)=(1-\gamma) \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j, s}\right)}+\frac{\gamma}{d}
$$

where

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{t}(i)} \mathbb{1}_{l_{t}=i}+\frac{\beta}{p_{t}(i)} .
$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])

Exp3.P satisfies with probability at least $1-\delta$

High probability bounds

What about bounds directly on the true regret

$$
\sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{i=1, \ldots, d} \sum_{t=1}^{n} \ell_{i, t} ?
$$

Auer et al. [2003] proposed Exp3.P:

$$
p_{t}(i)=(1-\gamma) \frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)}{\sum_{j=1}^{d} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{j, s}\right)}+\frac{\gamma}{d}
$$

where

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{p_{t}(i)} \mathbb{1}_{l_{t}=i}+\frac{\beta}{p_{t}(i)} .
$$

Theorem (Auer et al. [2003], Audibert and Bubeck [2011])
Exp3.P satisfies with probability at least $1-\delta$:

$$
\sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{i=1, \ldots, d} \sum_{t=1}^{n} \ell_{i, t} \leq 5.15 \sqrt{n d \log \left(d \delta^{-1}\right)}
$$

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.
- At each time step INF computes the new probability distribution as follows:
where C_{t} is the unique real number such that $\sum_{i=1}^{d} p_{t}(i)=1$ - $\psi(x)=\exp (n x)+\frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy.

Theorem (Audibert and Bubeck [2009, 2010])

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.
- At each time step INF computes the new probability distribution as follows:

$$
p_{t}(i)=\psi\left(C_{t}-\sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)
$$

where C_{t} is the unique real number such that $\sum_{i=1}^{d} p_{t}(i)=1$.

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.
- At each time step INF computes the new probability distribution as follows:

$$
p_{t}(i)=\psi\left(C_{t}-\sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)
$$

where C_{t} is the unique real number such that $\sum_{i=1}^{d} p_{t}(i)=1$.

- $\psi(x)=\exp (\eta x)+\frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy.

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.
- At each time step INF computes the new probability distribution as follows:

$$
p_{t}(i)=\psi\left(C_{t}-\sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right),
$$

where C_{t} is the unique real number such that $\sum_{i=1}^{d} p_{t}(i)=1$.

- $\psi(x)=\exp (\eta x)+\frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy.
- $\psi(x)=(-\eta x)^{-1 / 2}+\frac{\gamma}{d}$ is the quadratic INF strategy

Other types of normalization

- INF (Implicitly Normalized Forecaster) is based on a potential function $\psi: \mathbb{R}_{-}^{*} \rightarrow \mathbb{R}_{+}^{*}$ increasing, convex, twice continuously differentiable, and such that $(0,1] \subset \psi\left(\mathbb{R}_{-}^{*}\right)$.
- At each time step INF computes the new probability distribution as follows:

$$
p_{t}(i)=\psi\left(C_{t}-\sum_{s=1}^{t-1} \tilde{\ell}_{i, s}\right)
$$

where C_{t} is the unique real number such that $\sum_{i=1}^{d} p_{t}(i)=1$.

- $\psi(x)=\exp (\eta x)+\frac{\gamma}{d}$ corresponds exactly to the Exp3 strategy.
- $\psi(x)=(-\eta x)^{-1 / 2}+\frac{\gamma}{d}$ is the quadratic INF strategy

Theorem (Audibert and Bubeck [2009, 2010])

Quadratic INF satisfies: $R_{n} \leq 2 \sqrt{2 n d}$.

Extension: contextual bandits

- Contextual bandits: at each time step t one receives a context $s_{t} \in \mathcal{S}$, and one wants to perform as well as the best mapping from contexts to arms:

$$
R_{n}^{\mathcal{S}}=\mathbb{E} \sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{g: \mathcal{S} \rightarrow\{1, \ldots, d\}} \mathbb{E} \sum_{t=1}^{n} \ell_{g\left(s_{t}\right), t}
$$

- A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ_{t}^{k}, $k=1, \ldots, N$. One wants to compete with the best expert:

Extension: contextual bandits

- Contextual bandits: at each time step t one receives a context $s_{t} \in \mathcal{S}$, and one wants to perform as well as the best mapping from contexts to arms:

$$
R_{n}^{\mathcal{S}}=\mathbb{E} \sum_{t=1}^{n} \ell_{1_{t}, t}-\min _{g: \mathcal{S} \rightarrow\{1, \ldots, d\}} \mathbb{E} \sum_{t=1}^{n} \ell_{g\left(s_{t}\right), t}
$$

- A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ_{t}^{k}, $k=1, \ldots, N$. One wants to compete with the best expert:

$$
R_{n}^{N}=\mathbb{E} \sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{k \in\{1, \ldots, N\}} \mathbb{E} \sum_{t=1}^{n} \ell_{\xi_{t}^{k}, t}
$$

With the bandit feedback $\ell_{l_{t}, t}$ one can build an estimate for

Extension: contextual bandits

- Contextual bandits: at each time step t one receives a context $s_{t} \in \mathcal{S}$, and one wants to perform as well as the best mapping from contexts to arms:

$$
R_{n}^{\mathcal{S}}=\mathbb{E} \sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{g: \mathcal{S} \rightarrow\{1, \ldots, d\}} \mathbb{E} \sum_{t=1}^{n} \ell_{g\left(s_{t}\right), t} .
$$

- A related problem is bandit with experts advice: N experts are playing the game, and the player observes their actions ξ_{t}^{k}, $k=1, \ldots, N$. One wants to compete with the best expert:

$$
R_{n}^{N}=\mathbb{E} \sum_{t=1}^{n} \ell_{l_{t}, t}-\min _{k \in\{1, \ldots, N\}} \mathbb{E} \sum_{t=1}^{n} \ell_{\xi_{t}^{k}, t} .
$$

With the bandit feedback $\ell_{I_{t}, t}$ one can build an estimate for the loss of expert k as $\tilde{\ell}_{t}^{k}=\frac{\ell_{I_{t}, t} \mathbb{1}_{I_{t}=\xi_{t}^{k}}}{p_{t}\left(I_{t}\right)}$. Playing Exp on the set of experts with the above loss estimate yields $R_{n}^{N} \leq \sqrt{2 n d \log N}$.

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal $S\left(I_{t}, \ell_{t}\right)$, see Cesa-Bianchi and Lugosi [2006].

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal $S\left(I_{t}, \ell_{t}\right)$, see Cesa-Bianchi and Lugosi [2006].
- A simple interpolation between full info. and bandit feedback is the partial monitoring setting of Mannor and Shamir [2011]: $S\left(I_{t}, \ell_{t}\right)=\left\{\ell_{i, t}, i \in \mathcal{N}\left(I_{t}\right)\right\}$ where $\mathcal{N}:\{1, \ldots, d\} \rightarrow \mathcal{P}(\{1, \ldots, d\})$ is some known neighboorhood mapping.

Extension: partial monitoring

- Partial monitoring: the received feedback at time t is some signal $S\left(I_{t}, \ell_{t}\right)$, see Cesa-Bianchi and Lugosi [2006].
- A simple interpolation between full info. and bandit feedback is the partial monitoring setting of Mannor and Shamir [2011]: $S\left(I_{t}, \ell_{t}\right)=\left\{\ell_{i, t}, i \in \mathcal{N}\left(I_{t}\right)\right\}$ where $\mathcal{N}:\{1, \ldots, d\} \rightarrow \mathcal{P}(\{1, \ldots, d\})$ is some known neighboorhood mapping. A natural loss estimate in that case is

$$
\tilde{\ell}_{i, t}=\frac{\ell_{i, t} \mathbb{1}_{i \in \mathcal{N}\left(I_{t}\right)}}{\sum_{j \in \mathcal{N}(i)} p_{t}(j)}
$$

Mannor and Shamir [2011] proved that Exp with the above estimate has a regret of order $\sqrt{\alpha n}$ where α is the independence number of the graph associated to \mathcal{N}.

Assumption (Robbins [1952])
The sequence of losses $\left(\ell_{t}\right)_{1 \leq t \leq n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let v_{i} be the unknown reward distribution underlying arm i,
- Let $X_{i, s} \sim \nu_{i}$ be the reward obtained when pulling arm i for

arm i was pulled up to time t.
- Thus here

Assumption (Robbins [1952])

The sequence of losses $\left(\ell_{t}\right)_{1 \leq t \leq n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses $\left(\ell_{t}\right)_{1 \leq t \leq n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_{i} be the unknown reward distribution underlying arm i, μ_{i} the mean of $\nu_{i}, \mu^{*}=\max _{1 \leq i \leq d} \mu_{i}$ and $\Delta_{i}=\mu^{*}-\mu_{i}$.

the $s^{\text {th }}$ time, and
arm i was pulled up to time t.
- Thus here

Assumption (Robbins [1952])

The sequence of losses $\left(\ell_{t}\right)_{1 \leq t \leq n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_{i} be the unknown reward distribution underlying arm i, μ_{i} the mean of $\nu_{i}, \mu^{*}=\max _{1 \leq i \leq d} \mu_{i}$ and $\Delta_{i}=\mu^{*}-\mu_{i}$.
- Let $X_{i, s} \sim \nu_{i}$ be the reward obtained when pulling arm i for the $s^{\text {th }}$ time, and $T_{i}(t)=\sum_{s=1}^{t} \mathbb{1}_{I_{s}=i}$ the number of times arm i was pulled up to time t.

Stochastic Assumption

Assumption (Robbins [1952])

The sequence of losses $\left(\ell_{t}\right)_{1 \leq t \leq n}$ is a sequence of i.i.d random variables.

For historical reasons in this setting we consider gains rather than losses and we introduce different notation:

- Let ν_{i} be the unknown reward distribution underlying arm i, μ_{i} the mean of $\nu_{i}, \mu^{*}=\max _{1 \leq i \leq d} \mu_{i}$ and $\Delta_{i}=\mu^{*}-\mu_{i}$.
- Let $X_{i, s} \sim \nu_{i}$ be the reward obtained when pulling arm i for the $s^{\text {th }}$ time, and $T_{i}(t)=\sum_{s=1}^{t} \mathbb{1}_{I_{s}=i}$ the number of times arm i was pulled up to time t.
- Thus here

$$
R_{n}=n \mu^{*}-\mathbb{E} \sum_{t=1}^{n} \mu_{I_{t}}=\sum_{i=1}^{d} \Delta_{i} \mathbb{E} T_{i}(n)
$$

Optimism in face of uncertainty

General principle: given some observations from an unknown environment, build (with some probabilistic argument) a set of possible environments Ω, then act as if the real environment was the most favorable one in Ω.

Application to stochastic bandits: given the past rewards, build confidence intervals for the means (μ_{i}) (in particular build upper confidence bounds), then play the arm with the highest upper confidence bound.

Optimism in face of uncertainty

General principle: given some observations from an unknown environment, build (with some probabilistic argument) a set of possible environments Ω, then act as if the real environment was the most favorable one in Ω.

Application to stochastic bandits: given the past rewards, build confidence intervals for the means (μ_{i}) (in particular build upper confidence bounds), then play the arm with the highest upper confidence bound.

UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then with probability at least $1-\delta$,

$$
\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_{s}+\sqrt{\frac{\log \delta^{-1}}{2 t}}
$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]

UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then with probability at least $1-\delta$,

$$
\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_{s}+\sqrt{\frac{\log \delta^{-1}}{2 t}} .
$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]:

$$
I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \frac{1}{T_{i}(t-1)} \sum_{s=1}^{T_{i}(t-1)} X_{i, s}+\sqrt{\frac{2 \log t}{T_{i}(t-1)}} .
$$

UCB (Upper Confidence Bounds)

Theorem (Hoeffding [1963])

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then with probability at least $1-\delta$,

$$
\mathbb{E} X \leq \frac{1}{t} \sum_{s=1}^{t} X_{s}+\sqrt{\frac{\log \delta^{-1}}{2 t}}
$$

This directly suggests the famous UCB strategy of Auer, Cesa-Bianchi and Fischer [2002]:

$$
I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \frac{1}{T_{i}(t-1)} \sum_{s=1}^{T_{i}(t-1)} X_{i, s}+\sqrt{\frac{2 \log t}{T_{i}(t-1)}} .
$$

Auer et al. proved the following regret bound:

$$
R_{n} \leq \sum_{i: \Delta_{i}>0} \frac{10 \log n}{\Delta_{i}}
$$

Distribution-dependent lower bound
For any $p, q \in[0,1]$, let

$$
\mathrm{kl}(p, q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} .
$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a>0$, we have $\mathbb{E} T_{i}(n)=o\left(n^{a}\right)$ if $\Delta_{i}>0$. Then for any Bernoulli reward distributions,

Note that

Distribution-dependent lower bound

For any $p, q \in[0,1]$, let

$$
\mathrm{kl}(p, q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} .
$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a>0$, we have $\mathbb{E} T_{i}(n)=o\left(n^{a}\right)$ if $\Delta_{i}>0$. Then for any Bernoulli reward distributions,

$$
\liminf _{n \rightarrow+\infty} \frac{R_{n}}{\log n} \geq \sum_{i: \Delta_{i}>0} \frac{\Delta_{i}}{\operatorname{kl}\left(\mu_{i}, \mu^{*}\right)}
$$

Note that

Distribution-dependent lower bound

For any $p, q \in[0,1]$, let

$$
\mathrm{kl}(p, q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}
$$

Theorem (Lai and Robbins [1985])

Consider a consistent strategy, i.e. s.t. $\forall a>0$, we have $\mathbb{E} T_{i}(n)=o\left(n^{a}\right)$ if $\Delta_{i}>0$. Then for any Bernoulli reward distributions,

$$
\liminf _{n \rightarrow+\infty} \frac{R_{n}}{\log n} \geq \sum_{i: \Delta_{i}>0} \frac{\Delta_{i}}{\operatorname{kl}\left(\mu_{i}, \mu^{*}\right)}
$$

Note that

$$
\frac{1}{2 \Delta_{i}} \geq \frac{\Delta_{i}}{\mathrm{kl}\left(\mu_{i}, \mu^{*}\right)} \geq \frac{\mu^{*}\left(1-\mu^{*}\right)}{2 \Delta_{i}}
$$

Theorem (Chernoff's inequality)

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then

$$
\mathbb{P}\left(\frac{1}{t} \sum_{s=1}^{t} X_{s} \leq \mathbb{E} X-\epsilon\right) \leq \exp (-t \mathrm{kl}(\mathbb{E} X-\epsilon, \mathbb{E} X))
$$

In particular this implies that with probability at least $1-\delta$:

Theorem (Chernoff's inequality)

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then

$$
\mathbb{P}\left(\frac{1}{t} \sum_{s=1}^{t} X_{s} \leq \mathbb{E} X-\epsilon\right) \leq \exp (-t \mathrm{kl}(\mathbb{E} X-\epsilon, \mathbb{E} X))
$$

In particular this implies that with probability at least $1-\delta$:

$$
\mathbb{E} X \leq \max \left\{q \in[0,1]: \mathrm{kl}\left(\frac{1}{t} \sum_{s=1}^{t} X_{s}, q\right) \leq \frac{\log \delta^{-1}}{t}\right\}
$$

Theorem (Chernoff's inequality)

Let X, X_{1}, \ldots, X_{t} be i.i.d random variables in $[0,1]$, then

$$
\mathbb{P}\left(\frac{1}{t} \sum_{s=1}^{t} X_{s} \leq \mathbb{E} X-\epsilon\right) \leq \exp (-t \mathrm{kl}(\mathbb{E} X-\epsilon, \mathbb{E} X))
$$

In particular this implies that with probability at least $1-\delta$:

$$
\mathbb{E} X \leq \max \left\{q \in[0,1]: \mathrm{kl}\left(\frac{1}{t} \sum_{s=1}^{t} X_{s}, q\right) \leq \frac{\log \delta^{-1}}{t}\right\} .
$$

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$
\begin{aligned}
I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \max & \{q \in[0,1]: \\
\mathrm{kl} & \left.\left(\frac{1}{T_{i}(t-1)} \sum_{s=1}^{T_{i}(t-1)} X_{i, s}, q\right) \leq \frac{(1+\epsilon) \log t}{T_{i}(t-1)}\right\}
\end{aligned}
$$

Garivier and Cappé proved the following regret bound for n large enough:

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$
\begin{aligned}
I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \max & \{q \in[0,1]: \\
\mathrm{kl} & \left.\left(\frac{1}{T_{i}(t-1)} \sum_{s=1}^{T_{i}(t-1)} X_{i, s}, q\right) \leq \frac{(1+\epsilon) \log t}{T_{i}(t-1)}\right\}
\end{aligned}
$$

Garivier and Cappé proved the following regret bound for n large enough:

Thus Chernoff's bound suggests the KL-UCB strategy of Garivier and Cappé [2011] (see also Honda and Takemura [2010], Maillard, Munos and Stoltz [2011]) :

$$
\begin{aligned}
I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \max & \{q \in[0,1]: \\
& \left.\mathrm{kl}\left(\frac{1}{T_{i}(t-1)} \sum_{s=1}^{T_{i}(t-1)} X_{i, s}, q\right) \leq \frac{(1+\epsilon) \log t}{T_{i}(t-1)}\right\} .
\end{aligned}
$$

Garivier and Cappé proved the following regret bound for n large enough:

$$
R_{n} \leq \sum_{i: \Delta_{i}>0}(1+2 \epsilon) \frac{\Delta_{i}}{\mathrm{kl}\left(\mu_{i}, \mu^{*}\right)} \log n .
$$

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:
\square

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.
- Let $\pi_{i, t}$ be the posterior distribution for μ_{i} at the $t^{t h}$ round.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:
\square

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.
- Let $\pi_{i, t}$ be the posterior distribution for μ_{i} at the $t^{t h}$ round.
- Let $\theta_{i, t} \sim \pi_{i, t}$ (independently from the past given $\pi_{i, t}$).

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.
- Let $\pi_{i, t}$ be the posterior distribution for μ_{i} at the $t^{t h}$ round.
- Let $\theta_{i, t} \sim \pi_{i, t}$ (independently from the past given $\pi_{i, t}$).
- $I_{t} \in \operatorname{argmax}_{i=1, \ldots, d} \theta_{i, t}$.

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.
- Let $\pi_{i, t}$ be the posterior distribution for μ_{i} at the $t^{t h}$ round.
- Let $\theta_{i, t} \sim \pi_{i, t}$ (independently from the past given $\pi_{i, t}$).
- $I_{t} \in \operatorname{argmax}_{i=1, \ldots, d} \theta_{i, t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

A non-UCB strategy: Thompson's sampling

In Thompson [1933] the following strategy was proposed for the case of Bernoulli distributions:

- Assume a uniform prior on the parameters $\mu_{i} \in[0,1]$.
- Let $\pi_{i, t}$ be the posterior distribution for μ_{i} at the $t^{t h}$ round.
- Let $\theta_{i, t} \sim \pi_{i, t}$ (independently from the past given $\pi_{i, t}$).
- $I_{t} \in \operatorname{argmax}_{i=1, \ldots, d} \theta_{i, t}$.

The first theoretical guarantee for this strategy was provided in Agrawal and Goyal [2012], and in Kaufmann, Korda, and Munos [2012] it was proved that it attains essentially the same regret than KL-UCB. For the Bayesian regret one can say much more:

Theorem (Russo and van Roy [2013], Bubeck and Liu [2013])

For any prior distribution Thompson Sampling has a Bayesian regret smaller than $14 \sqrt{n K}$.

The standard UCB works for all σ^{2} - subgaussian distributions (not only bounded distributions), i.e. such that

$$
\mathbb{E} \exp (\lambda(X-\mathbb{E} X)) \leq \frac{\sigma^{2} \lambda^{2}}{2}, \forall \lambda \in \mathbb{R}
$$

It is easy to see that this is equivalent to

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

The standard UCB works for all σ^{2} - subgaussian distributions (not only bounded distributions), i.e. such that

$$
\mathbb{E} \exp (\lambda(X-\mathbb{E} X)) \leq \frac{\sigma^{2} \lambda^{2}}{2}, \forall \lambda \in \mathbb{R}
$$

It is easy to see that this is equivalent to

$$
\exists \alpha>0 \text { s.t. } \mathbb{E} \exp \left(\alpha X^{2}\right)<+\infty .
$$

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

The standard UCB works for all σ^{2} - subgaussian distributions (not only bounded distributions), i.e. such that

$$
\mathbb{E} \exp (\lambda(X-\mathbb{E} X)) \leq \frac{\sigma^{2} \lambda^{2}}{2}, \forall \lambda \in \mathbb{R}
$$

It is easy to see that this is equivalent to

$$
\exists \alpha>0 \text { s.t. } \mathbb{E} \exp \left(\alpha X^{2}\right)<+\infty .
$$

What happens for distributions with heavier tails? Can we get logarithmic regret if the distributions only have a finite variance?

Median of means, Alon, Gibbons, Matias and Szegedy [2002]

Lemma

Let X, X_{1}, \ldots, X_{n} be i.i.d random variables such that $\mathbb{E}(X-\mathbb{E} X)^{2} \leq 1$.
Then with probability at least $1-\delta$,

Median of means, Alon, Gibbons, Matias and Szegedy [2002]

Lemma

Let X, X_{1}, \ldots, X_{n} be i.i.d random variables such that $\mathbb{E}(X-\mathbb{E} X)^{2} \leq 1$.
Then with probability at least $1-\delta$,
$\mathbb{E} X \leq \operatorname{median}\left(\frac{1}{N} \sum_{s=1}^{N} X_{s}, \ldots, \frac{1}{N} \sum_{s=(k-1) N+1}^{k N} X_{s}\right)$

Median of means, Alon, Gibbons, Matias and Szegedy [2002]

Lemma

Let X, X_{1}, \ldots, X_{n} be i.i.d random variables such that $\mathbb{E}(X-\mathbb{E} X)^{2} \leq 1$. Let $\delta \in(0,1), k=8 \log \delta^{-1}$ and $N=\frac{n}{8 \log \delta^{-1}}$.
Then with probability at least $1-\delta$,

$$
\operatorname{median}\left(\frac{1}{N} \sum_{s=1}^{N} X_{s}, \ldots, \frac{1}{N} \sum_{s=(k-1) N+1}^{k N} x_{s}\right)
$$

Median of means, Alon, Gibbons, Matias and Szegedy [2002]

Lemma

Let X, X_{1}, \ldots, X_{n} be i.i.d random variables such that $\mathbb{E}(X-\mathbb{E} X)^{2} \leq 1$. Let $\delta \in(0,1), k=8 \log \delta^{-1}$ and $N=\frac{n}{8 \log \delta^{-1}}$.
Then with probability at least $1-\delta$,
$\mathbb{E} X \leq \operatorname{median}\left(\frac{1}{N} \sum_{s=1}^{N} X_{s}, \ldots, \frac{1}{N} \sum_{s=(k-1) N+1}^{k N} X_{s}\right)+8 \sqrt{\frac{8 \log \left(\delta^{-1}\right)}{n}}$.

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and Lugosi [2012]:

$$
\begin{aligned}
& I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \operatorname{median}\left(\frac{1}{N_{i, t}} \sum_{s=1}^{N_{i, t}} X_{i, s}, \ldots, \frac{1}{N_{i, t}} \sum_{s=\left(k_{t}-1\right) N_{i, t}+1}^{k_{t} N_{i, t}} X_{i, s}\right) \\
& \quad+32 \sqrt{\frac{\log t}{T_{i}(t-1)}}
\end{aligned}
$$

with $k_{t}=16 \log t$ and $N_{i, t}=\frac{T_{i}(t-1)}{16 \log t}$.
can be proved for any set of distributions with variance bounded by

This suggests a Robust UCB strategy, Bubeck, Cesa-Bianchi and Lugosi [2012]:

$$
\begin{aligned}
& I_{t} \in \underset{1 \leq i \leq d}{\operatorname{argmax}} \operatorname{median}\left(\frac{1}{N_{i, t}} \sum_{s=1}^{N_{i, t}} X_{i, s}, \ldots, \frac{1}{N_{i, t}} \sum_{s=\left(k_{t}-1\right) N_{i, t}+1}^{k_{t} N_{i, t}} X_{i, s}\right) \\
& \quad+32 \sqrt{\frac{\log t}{T_{i}(t-1)}},
\end{aligned}
$$

with $k_{t}=16 \log t$ and $N_{i, t}=\frac{T_{i}(t-1)}{16 \log t}$. The following regret bound can be proved for any set of distributions with variance bounded by 1 :

$$
R_{n} \leq c \sum_{i: \Delta_{i}>0} \frac{\log n}{\Delta_{i}}
$$

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_{n} \leq c \sqrt{n d \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_{n} \geq \frac{1}{20} \sqrt{n d}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009))
- If μ^{*} is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013)
- It is possible to design a strategy with simultaneously $R_{n} \leq c \frac{d}{\Lambda} \log ^{2}(n)$ in the stochastic setting, and $R_{n} \leq c \sqrt{d n} \log ^{3}(n)$ in the adversarial setting, Bubeck and Slivkins (2012)
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is $\Theta\left(n^{2 / 3}\right)$.

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_{n} \leq c \sqrt{n d \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_{n} \geq \frac{1}{20} \sqrt{n d}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).

Robbins (1987), Bubeck, Perchet and Rigollet (2013)

- It is possible to design a strategy with simultaneously $R_{n} \leq c \frac{d}{\Delta} \log ^{2}(n)$ in the stochastic setting, and $R_{n} \leq c \sqrt{d n} \log ^{3}(n)$ in the adversarial setting, Bubeck and Slivkins (2012)
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013) optimal regret is $\Theta\left(n^{2 / 3}\right)$.

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_{n} \leq c \sqrt{n d \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_{n} \geq \frac{1}{20} \sqrt{n d}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^{*} is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
$R_{n} \leq c \sqrt{d n} \log ^{3}(n)$ in the adversarial setting, Bubeck and Slivkins (2012)
- Bandits with switching cost, Dekel, Ding, Koren and Peres
\square

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_{n} \leq c \sqrt{n d \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_{n} \geq \frac{1}{20} \sqrt{n d}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^{*} is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_{n} \leq c \frac{d}{\Delta} \log ^{2}(n)$ in the stochastic setting, and $R_{n} \leq c \sqrt{d n} \log ^{3}(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is $\Theta($

More extensions

- Slowly changing distributions over time, e.g. Garivier and Moulines (2008).
- Distribution-free regret: UCB has a regret always bounded as $R_{n} \leq c \sqrt{n d \log n}$. Furthermore one can prove that for any strategy there exists a set of distributions such that $R_{n} \geq \frac{1}{20} \sqrt{n d}$. The extraneous logarithmic factor can be removed with MOSS (Audibert and Bubeck (2009)).
- If μ^{*} is known then a constant regret is achievable, Lai and Robbins (1987), Bubeck, Perchet and Rigollet (2013).
- It is possible to design a strategy with simultaneously $R_{n} \leq c \frac{d}{\Delta} \log ^{2}(n)$ in the stochastic setting, and $R_{n} \leq c \sqrt{d n} \log ^{3}(n)$ in the adversarial setting, Bubeck and Slivkins (2012).
- Bandits with switching cost, Dekel, Ding, Koren and Peres (2013): optimal regret is $\Theta\left(n^{2 / 3}\right)$.

\mathcal{X}-armed bandits

Stochastic multi-armed bandit where $\{1, \ldots, K\}$ is replaced by a metric space \mathcal{X}. At time $t_{\text {, select }} x_{t} \in \mathcal{X}$, then receive a random variable $Y_{t} \in[0,1]$ such that $\mathbb{E}\left[Y_{t} \mid x_{t}\right]=f\left(x_{t}\right)$.

The regret is defined as:

The standard assumption in this context if that f is Lipschitz.

\mathcal{X}-armed bandits

Stochastic multi-armed bandit where $\{1, \ldots, K\}$ is replaced by a metric space \mathcal{X}. At time t, select $x_{t} \in \mathcal{X}$, then receive a random variable $Y_{t} \in[0,1]$ such that $\mathbb{E}\left[Y_{t} \mid x_{t}\right]=f\left(x_{t}\right)$.

The regret is defined as:

The standard assumption in this context if that f is Lipschitz.

\mathcal{X}-armed bandits

Stochastic multi-armed bandit where $\{1, \ldots, K\}$ is replaced by a metric space \mathcal{X}. At time t, select $x_{t} \in \mathcal{X}$, then receive a random variable $Y_{t} \in[0,1]$ such that $\mathbb{E}\left[Y_{t} \mid x_{t}\right]=f\left(x_{t}\right)$.

The regret is defined as:

$$
R_{n}=n \sup _{x \in \mathcal{X}} f(x)-\mathbb{E} \sum_{t=1}^{n} f\left(x_{t}\right)
$$

The standard assumption in this context if that f is Lipschitz.

\mathcal{X}-armed bandits

Stochastic multi-armed bandit where $\{1, \ldots, K\}$ is replaced by a metric space \mathcal{X}. At time t, select $x_{t} \in \mathcal{X}$, then receive a random variable $Y_{t} \in[0,1]$ such that $\mathbb{E}\left[Y_{t} \mid x_{t}\right]=f\left(x_{t}\right)$.

The regret is defined as:

$$
R_{n}=n \sup _{x \in \mathcal{X}} f(x)-\mathbb{E} \sum_{t=1}^{n} f\left(x_{t}\right)
$$

The standard assumption in this context if that f is Lipschitz.

\mathcal{X}-armed bandits

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008 , 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric"

\mathcal{X}-armed bandits

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*} .
$$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: independent of the dimension D
- Smonthness underestimated:
- Smoothness overestimated: UCT (Kocsis and Szepesvári 2006) corresponds to

\mathcal{X}-armed bandits

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated:
- Smoothness overestimated: $\beta>\alpha$. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to

\mathcal{X}-armed bandits

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta<\alpha$.

$$
R_{n}=\tilde{O}\left(n^{(d+1) /(d+2)}\right) \text { where } d=D\left(\frac{1}{\beta}-\frac{1}{\alpha}\right) \text {. }
$$

\mathcal{X}-armed bandits

$\mathcal{X}=[0,1]^{D}, \alpha \geq 0$ and mean-payoff function f locally " α-smooth" around (any of) its maximum x^{*} (in finite number):

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x-x^{*}\right\|^{\alpha}\right) \text { as } x \rightarrow x^{*}
$$

Theorem

Assume that we run HOO (Bubeck, Munos, Stoltz, Szepesvári, 2008, 2011) or Zooming algorithm (Kleinberg, Slivkins, Upfal, 2008) using the "metric" $\rho(x, y)=\|x-y\|^{\beta}$.

- Known smoothness: $\beta=\alpha$. $R_{n}=\tilde{O}(\sqrt{n})$, i.e., the rate is independent of the dimension D.
- Smoothness underestimated: $\beta<\alpha$.

$$
R_{n}=\tilde{O}\left(n^{(d+1) /(d+2)}\right) \text { where } d=D\left(\frac{1}{\beta}-\frac{1}{\alpha}\right) \text {. }
$$

- Smoothness overestimated: $\beta>\alpha$. No guarantee. Note: UCT (Kocsis and Szepesvári 2006) corresponds to $\beta=+\infty$.

Combinatorial prediction game

Adversary

Player

Combinatorial prediction game

Adversary

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Combinatorial prediction game

Player \longrightarrow

loss suffered: $\ell_{2}+\ell_{7}+\ldots+\ell_{d}$

Notation

$\xrightarrow{\sim} V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} V_{t}-\min _{u \in S} \mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} u
$$

$\leadsto \leadsto V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$\leftrightarrow \leadsto V_{t} \in \mathcal{S}$, loss suffered: $\ell_{t}^{T} V_{t}$

$$
R_{n}=\mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} V_{t}-\min _{u \in S} \mathbb{E} \sum_{t=1}^{n} \ell_{t}^{T} u
$$

Set of concepts $S \subset\{0,1\}^{d}$

Spanning trees
k-sized intervals

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{l}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in S: V_{i}=1} P_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{T} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\ell_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{+}=P_{t}^{+} V_{+} V_{t}^{\top} \ell_{+}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,

$$
V_{t} \sim p_{t}, \quad p_{t} \in \Delta(\mathcal{S})
$$

Then, unbiased estimate $\tilde{\ell}_{t}$ of the loss ℓ_{t} :

- $\tilde{\ell}_{t}=\ell_{t}$ in the full information game,
- $\tilde{\ell}_{i, t}=\frac{\ell_{i, t}}{\sum_{V \in \mathcal{S}: V_{i}=1} p_{t}(V)} V_{i, t}$ in the semi-bandit game,
- $\tilde{\ell}_{t}=P_{t}^{+} V_{t} V_{t}^{T} \ell_{t}$, with $P_{t}=\mathbb{E}_{V \sim p_{t}}\left(V V^{T}\right)$ in the bandit game.

Loss assumptions

Definition (L_{∞})
We say that the adversary satisfies the L_{∞} assumption: if $\left\|\ell_{t}\right\|_{\infty} \leq 1$ for all $t=1, \ldots, n$.

Definition $\left(L_{2}\right)$

We say that the adversary satisfies the L_{2} assumption: if $\ell_{t}^{T} v \leq 1$

Loss assumptions

Definition (L_{∞})

We say that the adversary satisfies the L_{∞} assumption: if $\left\|\ell_{t}\right\|_{\infty} \leq 1$ for all $t=1, \ldots, n$.

Definition $\left(L_{2}\right)$

We say that the adversary satisfies the L_{2} assumption: if $\ell_{t}^{T} v \leq 1$ for all $t=1, \ldots, n$ and $v \in \mathcal{S}$.

Expanded Exponentially weighted average forecaster (Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n},
$$

which is the optimal rate, Dani, Hayes and Kakade [2008]. - Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n}
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010] - Audibert, Bubeck and Lugosi [2011] showed that, for any η, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that:

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n}
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

But this is suboptimal, Koolen, Warmuth and Kivinen [2010] - Audibert, Bubeck and Lugosi [2011] showed that, for any η, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that:

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n},
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

- Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n}
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].
there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that:

Expanded Exponentially weighted average forecaster
(Exp2)

$$
p_{t}(v)=\frac{\exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} v\right)}{\sum_{u \in \mathcal{S}} \exp \left(-\eta \sum_{s=1}^{t-1} \tilde{\ell}_{s}^{T} u\right)}
$$

- In the full information game, against L_{2} adversaries, we have (for some η)

$$
R_{n} \leq \sqrt{2 d n},
$$

which is the optimal rate, Dani, Hayes and Kakade [2008].

- Thus against L_{∞} adversaries we have

$$
R_{n} \leq d^{3 / 2} \sqrt{2 n} .
$$

But this is suboptimal, Koolen, Warmuth and Kivinen [2010].

- Audibert, Bubeck and Lugosi [2011] showed that, for any η, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞} adversary such that:

$$
R_{n} \geq 0.02 \mathrm{~d}^{3 / 2} \sqrt{n} .
$$

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

Legendre function

Definition

Let \mathcal{D} be a convex subset of \mathbb{R}^{d} with nonempty interior $\operatorname{int}(\mathcal{D})$ and boundary $\partial \mathcal{D}$. We call Legendre any function $F: \mathcal{D} \rightarrow \mathbb{R}$ such that

- F is strictly convex and admits continuous first partial derivatives on $\operatorname{int}(\mathcal{D})$,
- For any $u \in \partial \mathcal{D}$, for any $v \in \operatorname{int}(\mathcal{D})$, we have

$$
\lim _{s \rightarrow 0, s>0}(u-v)^{T} \nabla F((1-s) u+s v)=+\infty .
$$

Bregman divergence

Definition

The Bregman divergence $D_{F}: \mathcal{D} \times \operatorname{int}(\mathcal{D})$ associated to a Legendre function F is defined by

$$
D_{F}(u, v)=F(u)-F(v)-(u-v)^{T} \nabla F(v)
$$

Definition

The Legendre transform of F is defined by

$$
F^{*}(u)=\sup _{x \in \mathcal{D}} x^{T} u-F(x)
$$

Key property for Legendre functions: $\nabla F^{*}=(\nabla F)^{-1}$.

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
w_{t+1}^{\prime}=\nabla F^{*}\left(\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}\right)
$$

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
w_{t+1}^{\prime}=\nabla F^{*}\left(\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}\right)
$$

(2) $w_{t+1} \in \underset{w \in \operatorname{Conv}(\mathcal{S})}{\operatorname{argmin}} D_{F}\left(w, w_{t+1}^{\prime}\right)$

Online Stochastic Mirror Descent (OSMD)

Parameter: F Legendre on $\mathcal{D} \supset \operatorname{Conv}(\mathcal{S})$
(1) $w_{t+1}^{\prime} \in \mathcal{D}$:

$$
w_{t+1}^{\prime}=\nabla F^{*}\left(\nabla F\left(w_{t}\right)-\tilde{\ell}_{t}\right)
$$

(2) $w_{t+1} \in \underset{w \in \operatorname{Conv}(\mathcal{S})}{\operatorname{argmin}} D_{F}\left(w, w_{t+1}^{\prime}\right)$
(3) $p_{t+1} \in \Delta(\mathcal{S}): w_{t+1}=\mathbb{E}_{V \sim p_{t+1}} V$

$$
w_{t+1}^{\prime}
$$

A little bit of advertising 2

吕
S. Bubeck

Theory of Convex Optimization for Machine Learning arXiv:1405.4980

General regret bound for OSMD

Theorem

If F admits a Hessian $\nabla^{2} F$ always invertible then,

$$
R_{n} \lesssim \operatorname{diam}_{D_{F}}(\mathcal{S})+\mathbb{E} \sum_{t=1}^{n} \tilde{\ell}_{t}^{T}\left(\nabla^{2} F\left(w_{t}\right)\right)^{-1} \tilde{\ell}_{t}
$$

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

(Full Info: Exp
Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

(Full Info: Exp
Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]

Different instances of OSMD: LinExp (Entropy Function)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\frac{1}{\eta} \sum_{i=1}^{d} x_{i} \log x_{i}
$$

\int Full Info: Exp
Semi-Bandit=Bandit: Exp3 Auer et al. [2002]

(Full Info: Component Hedge Koolen, Warmuth and Kivinen [2010]

Semi-Bandit: MW
Kale, Reyzin and Schapire [2010]
Bandit: bad algorithm!

Different instances of OSMD: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

Different instances of OSMD: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

Different instances of OSMD: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{c}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1
\end{array}\right.
$$

Different instances of OSMD: LinINF (Exchangeable Hessian)

$$
\mathcal{D}=[0,+\infty)^{d}, F(x)=\sum_{i=1}^{d} \int_{0}^{x_{i}} \psi^{-1}(s) d s
$$

INF, Audibert and Bubeck [2009]

$$
\left\{\begin{array}{l}
\psi(x)=\exp (\eta x): \operatorname{LinExp} \\
\psi(x)=(-\eta x)^{-q}, q>1: \text { LinPoly }
\end{array}\right.
$$

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Particularly interesting choice:

Abernethy, Hazan and Rakhlin [2008]

Different instances of OSMD: Follow the regularized leader

$\mathcal{D}=\operatorname{Conv}(\mathcal{S})$, then

$$
w_{t+1} \in \underset{w \in \mathcal{D}}{\operatorname{argmin}}\left(\sum_{s=1}^{t} \tilde{\ell}_{s}^{T} w+F(w)\right)
$$

Particularly interesting choice: F self-concordant barrier function, Abernethy, Hazan and Rakhlin [2008]

Theorem (Koolen, Warmuth and Kivinen [2010])

In the full information game, the LinExp strategy (with well-chosen parameters) satisfies for any concept class $S \subset\{0,1\}^{d}$ and any L_{∞}-adversary:

$$
R_{n} \leq d \sqrt{2 n}
$$

Moreover for any strategy, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞}-adversary such that:

$$
R_{n} \geq 0.008 d \sqrt{n}
$$

Minimax regret for the semi-bandit game

Theorem (Audibert, Bubeck and Lugosi [2011])

In the semi-bandit game, the LinExp strategy (with well-chosen parameters) satisfies for any concept class $S \subset\{0,1\}^{d}$ and any L_{∞}-adversary:

$$
R_{n} \leq d \sqrt{2 n}
$$

Moreover for any strategy, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞}-adversary such that:

$$
R_{n} \geq 0.008 d \sqrt{n}
$$

Minimax regret for the bandit game

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on S to control third order error terms in the regret bound.
- Second, the control of the quadratic term $\tilde{\ell}_{t}^{\top}\left(\nabla^{2} F\left(w_{t}\right)\right)^{-1} \tilde{\ell}_{t}$ is much more involved than previously.

Minimax regret for the bandit game

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on S to control third order error terms in the regret bound.
- Second, the control of the quadratic term is much more involved than previously.

Minimax regret for the bandit game

For the bandit game the situation becomes trickier.

- First it appears necessary to add some sort of forced exploration on S to control third order error terms in the regret bound.
- Second, the control of the quadratic term $\tilde{\ell}_{t}^{T}\left(\nabla^{2} F\left(w_{t}\right)\right)^{-1} \tilde{\ell}_{t}$ is much more involved than previously.

John's distribution

Theorem (John's Theorem)

Let $\mathcal{K} \subset \mathbb{R}^{d}$ be a convex set. If the ellipsoid \mathcal{E} of minimal volume enclosing \mathcal{K} is the unit ball in some norm derived from a scalar product $\langle\cdot, \cdot\rangle$, then there exists $M \leq d(d+1) / 2+1$ contact points u_{1}, \ldots, u_{M} between \mathcal{E} and \mathcal{K}, and $\mu \in \Delta_{M}$ (the simplex of dimension $M-1$), such that

$$
x=d \sum_{i=1}^{M} \mu_{i}\left\langle x, u_{i}\right\rangle u_{i}, \forall x \in \mathbb{R}^{d}
$$

Minimax regret for the bandit game

Theorem (Audibert, Bubeck and Lugosi [2011], Bubeck,
 Cesa-Bianchi and Kakade [2012])

In the bandit game, the Exp2 strategy with John's exploration satisfies for any concept class $S \subset\{0,1\}^{d}$ and any L_{∞}-adversary:

$$
R_{n} \leq 4 d^{2} \sqrt{n}
$$

and respectively $R_{n} \leq 4 d \sqrt{n}$ for an L_{2}-adversary.
Moreover for any strategy, there exists a subset $S \subset\{0,1\}^{d}$ and an L_{∞}-adversary such that:

$$
R_{n} \geq 0.01 d^{3 / 2} \sqrt{n}
$$

For L_{2}-adversaries the lower bound is $0.05 \min (n, d \sqrt{n})$.
Conjecture: for an L_{∞}-adversary the correct order of magnitude is $d^{3 / 2} \sqrt{n}$ and it can be attained with OSMD.

