Sébastien Bubeck – Publications
Lecture Notes, Survey, PhD Thesis
M. Racz and S. Bubeck, Basic models and questions in statistical network analysis. Statist. Surv. 11 (2017), 1–47. [arxiv]
S. Bubeck, Convex Optimization: Algorithms and Complexity. In Foundations and Trends in Machine Learning, Vol. 8: No. 3-4, pp 231-357, 2015 [pdf]
S. Bubeck, The complexities of optimization. Lecture notes, 2013. Available on my blog.
S. Bubeck and N. Cesa-Bianchi, Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. In Foundations and Trends in Machine Learning, Vol 5: No 1, 1-122, 2012. [pdf]
S. Bubeck, Introduction to Online Optimization. Lecture Notes, 2011. [draft]
S. Bubeck, Bandits Games and Clustering Foundations. PhD dissertation, Université Lille 1, 2010 (Jacques Neveu prize 2010, runner-up for the french AI prize 2011, runner-up for the Gilles Kahn prize 2010). [pdf] [slides of the defense] [slides of my jobtalk] [slides for the Gilles Kahn prize]
“Preprints” (to remain as preprints for the time being)
Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone, 2024 [arxiv]
Positional Description Matters for Transformers Arithmetic, 2023 [arxiv]
Textbooks Are All You Need II: phi-1.5 technical report, 2023 [arxiv]
Textbooks Are All You Need, 2023 [arxiv]
Sparks of Artificial General Intelligence: Early experiments with GPT-4, 2023 [arxiv]
Unveiling Transformers with LEGO: a synthetic reasoning task, 2022 [arxiv]
Journal Papers
P Lee, S Bubeck, J Petro, Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. New England Journal of Medicine 388 (13), 1233-1239.
S. Bubeck and M. Sellke, A Universal Law of Robustness via Isoperimetry. In JACM, 2023. [arxiv]
S. Bubeck, M. B. Cohen, J. R. Lee, Y.T. Lee, Metrical task systems on trees via mirror descent and unfair gluing. In SICOMP, 2021. [arxiv]
S. Bubeck, Y.T. Lee, Y. Li, M. Sellke, Competitively Chasing Convex Bodies. In SICOMP. [arxiv]
S. Bubeck, R. Eldan and Y. T. Lee, Kernel-based methods for bandit convex optimization. In JACM, 2021. [arxiv]
K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, L. Massoulié, Optimal Convergence Rates for Convex Distributed Optimization in Networks. In Journal of Machine Learning Research, 2019.
S. Bubeck and R. Eldan, Exploratory distributions for convex functions. In Mathematical Statistics and Learning, 2018. [arxiv]
S. Bubeck, J. Lehec, and R. Eldan, Sampling from a log-concave distribution with Projected Langevin Monte Carlo. In Discrete & Computational Geometry, 2018. [arxiv]
S. Bubeck and R. Eldan, The entropic barrier: exponential families, log-concave geometry and self-concordance. In Mathematics of Operations Research, 2018. [arxiv]
E. Arias-Castro, S. Bubeck, G. Lugosi and N. Verzelen, Detecting Markov Random Fields Hidden in White Noise. In Bernoulli, 2017. [arxiv]
S. Bubeck and S. Ganguly, Entropic CLT and phase transition in high-dimensional Wishart matrices. In International Mathematics Research Notices, 2015. [arxiv]
S. Bubeck, J. Ding, R. Eldan and M. Racz, Testing for high-dimensional geometry in random graphs. In Random Structures and Algorithms, 2015. [draft]
L. Addario-Berry, S. Bhamidi, S. Bubeck, L. Devroye, G. Lugosi, and R. Imbuzeiro Oliveira, Exceptional rotations of random graphs: a VC theory. In Journal of Machine Learning Research (JMLR), 2015. [arxiv]
S. Bubeck, R. Eldan, E. Mossel and M. Racz, From trees to seeds: on the inference of the seed from large trees in the uniform attachment model. In Bernoulli, 2014. [draft]
S. Bubeck, L. Devroye and G. Lugosi, Finding Adam in random growing trees. In Random Structures and Algorithms, 2015. [draft]
S. Bubeck, E. Mossel and M. Racz, On the influence of the seed graph in the preferential attachment model. IEEE Transactions on Network Science and Engineering 1, 30-39, 2015. [arxiv]
E. Arias-Castro, S. Bubeck and G. Lugosi, Detecting Positive Correlations in a Multivariate Sample. Bernoulli 21, 209-241, 2015. [draft]
S. Bubeck and N. Linial, On the local profiles of trees. Journal of Graph Theory, 2015. [draft]
J.Y. Audibert, S. Bubeck and G. Lugosi, Regret in Online Combinatorial Optimization. Mathematics of Operations Research, 39, 31-45, 2014. [draft]
S. Bubeck, N. Cesa-Bianchi and G. Lugosi, Bandits with heavy tail. IEEE Transactions on Information Theory 59, 7711-7717, 2013. [pdf]
S. Bubeck, D. Ernst and A. Garivier, Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality. Journal of Machine Learning Research (JMLR), 14, 601-623, 2013. [pdf]
E. Arias-Castro, S. Bubeck and G. Lugosi, Detection of correlations. Annals of Statistics 40, 412-435, 2012. [pdf]
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, X-Armed Bandits. Journal of Machine Learning Research (JMLR) 12, 1587-1627, 2011. [pdf] [slides] [Video]
J.Y. Audibert and S. Bubeck, Regret Bounds and Minimax Policies under Partial Monitoring. Journal of Machine Learning Research (JMLR) 11, 2635-2686, 2010. [pdf]
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in Finitely-Armed and Continuously-Armed Bandits. Theoretical Computer Science 412, 1832-1852, 2011. [pdf]
S. Bubeck, M. Meila and U. von Luxburg, How the Initialization Affects the Stability of the k-means Algorithm. ESAIM: Probability and Statistics 16, 436-452, 2012. [pdf]
S. Bubeck and U. von Luxburg, Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions. Journal of Machine Learning Research (JMLR) 10, 657-698, 2009. [pdf]
Conference Paper
K. Ahn, S. Bubeck, S. Chewi, Y.T. Lee, F. Suarez, Y. Zhang, Learning threshold neurons via the “edge of stability”. NeurIPS 2023 [arxiv]
A. Kumar, R. Shen, S. Bubeck, S. Gunasekar, How to Fine-Tune Vision Models with SGD. ICLR 2024 [arxiv]
S. Bubeck, C. Coester, Y. Rabani, The Randomized k-Server Conjecture is False!. STOC 2023 (Best Paper Award). [arxiv]
S. Chewi, S. Bubeck, A. Salim, On the complexity of finding stationary points of smooth functions in one dimension. ALT 2023 (Best Student Paper Award). [arxiv]
S. Bubeck, C. Coester, Y. Rabani, Shortest Paths without a Map, but with an Entropic Regularizer. FOCS 2022. [arxiv]
R. Shen, S. Bubeck, S. Gunasekar, Data Augmentation as Feature Manipulation: a story of desert cows and grass cows. ICML 2022 [arxiv]
P. Bartlett, S. Bubeck, and Y. Cherapanamjeri, Adversarial Examples in Multi-Layer Random ReLU Networks. NeurIPS 2021. [arxiv]
S. Bubeck and M. Sellke, A Universal Law of Robustness via Isoperimetry. NeurIPS 2021 (Best Paper Award). [arxiv]
S. Bubeck, Y. Cherapanamjeri, G. Gidel, R. Tachet des Combes, A single gradient step finds adversarial examples on random two-layers neural networks. NeurIPS 2021. [arxiv]
S. Bubeck, T. Budzinski, and M. Sellke, Cooperative and Stochastic Multi-Player Multi-Armed Bandit: Optimal Regret With Neither Communication Nor Collisions. COLT 2021. [arxiv]
S. Bubeck, Y. Li, and D. Nagaraj, A law of robustness for two-layers neural networks. COLT 2021. [arxiv]
S. Bubeck, N. Buchbinder, C. Coester, and M. Sellke, Metrical Service Systems with Transformations. ITCS 2021. [arxiv]
S. Bubeck, Y. Rabani, and M. Sellke, Online Multiserver Convex Chasing and Optimization. SODA 2021. [arxiv]
S. Bubeck, R. Eldan, Y.T. Lee, and D. Mikulincer, Network size and weights size for memorization with two-layers neural networks. NeurIPS 2020. [arxiv]
S. Bubeck, S. Chen, and J. Li, Entanglement is Necessary for Optimal Quantum Property Testing. FOCS 2020. [arxiv]
S. Bubeck and T. Budzinski, Coordination without communication: optimal regret in two players multi-armed bandits. COLT 2020. [arxiv]
S. Bubeck and D. Mikulincer, How to trap a gradient flow. COLT 2020. [arxiv]
S. Bubeck, Y. Li, Y. Peres, M. Sellke, Non-Stochastic Multi-Player Multi-Armed Bandits: Optimal Rate With Collision Information, Sublinear Without. COLT 2020. [arxiv]
A. Kolobov, S. Bubeck, and J. Zimmert, Online Learning for Active Cache Synchronization. ICML 2020. [arxiv]
H. Hendrikx, L. Xiao, S. Bubeck, F. Bach, and L. Massoulie, Statistically Preconditioned Accelerated Gradient Method for Distributed Optimization. ICML 2020. [arxiv]
S. Bubeck and Y. Rabani, Parametrized Metrical Task Systems. Approx 2020. [arxiv]
S. Bubeck, B. Klartag, Y.T. Lee, Y. Li, M. Sellke, Chasing Nested Convex Bodies Nearly Optimally. SODA 2020. [arxiv]
S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, A. Sidford, Complexity of Highly Parallel Non-Smooth Convex Optimization. NeurIPS 2019. [arxiv]
H. Salman, G. Yang, J. Li, P. Zhang, H. Zhang, I. Razenshteyn, S. Bubeck, Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers. NeurIPS 2019. [arxiv]
S. Bubeck and M. Sellke, First-Order Regret Analysis of Thompson Sampling. ALT 2019. [arxiv]
S. Bubeck, Y. Li, H. Luo, C.-Y. Wei, Improved Path-length Regret Bounds for Bandits. COLT 2019. [arxiv]
S. Bubeck, Q. Jiang, Y.T. Lee, Y. Li, A. Sidford, Near-optimal method for highly smooth convex optimization. COLT 2019. [arxiv]
S. Bubeck, Y.T. Lee, Y. Li, M. Sellke, Competitively Chasing Convex Bodies. Extended abstract in STOC 2019. [arxiv]
S. Bubeck, M. B. Cohen, J. R. Lee, Y.T. Lee, Metrical task systems on trees via mirror descent and unfair gluing. Extended abstract in SODA 2019. [arxiv]
C.J. Argue, S. Bubeck, M. B. Cohen, A. Gupta, Y.T. Lee, Nearly linear competitive ratio for chasing nested convex bodies. SODA 2019. [arxiv]
S. Bubeck, Y.T. Lee, E. Price, I. Razenshteyn, Adversarial Examples from Cryptographic Pseudo-Random Generators. (merged with paper below) [arxiv]
S. Bubeck, E. Price, I. Razenshteyn, Adversarial examples from computational constraints. ICML 2019 [arxiv]
K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, L. Massoulié, Optimal Algorithms for Non-Smooth Distributed Optimization in Networks. NeurIPS 2018 (Best Paper Award) [arxiv]
Z. Allen-Zhu, S. Bubeck, and Y. Li, Make the Minority Great Again: First-Order Regret Bound for Contextual Bandits. NeurIPS 2018. [arxiv]
S. Bubeck, M. B. Cohen, J. R. Lee, Y.T. Lee, A. Madry, k-server via multiscale entropic regularization. STOC 2018. [arxiv].
S. Bubeck, M. B. Cohen, Y.T. Lee, Y. Li, An homotopy method for ell_p regression provably beyond self-concordance and in input-sparsity time. STOC 2018. [arxiv].
S. Bubeck, M. B. Cohen, Y. Li, Sparsity, variance and curvature in multi-armed bandits . ALT 2018 (Best Student Paper Award). [arxiv].
K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, L. Massoulié, Optimal algorithms for smooth and strongly convex distributed optimization in networks. ICML 2017 [arxiv]
S. Bubeck, N. R. Devanur, Z. Huang, R. Niazadeh, Online Auctions and Multi-scale Online Learning. EC 2017 [arxiv]
S. Bubeck, R. Eldan and Y. T. Lee, Kernel-based methods for bandit convex optimization. Extended abstract in STOC 2017. [arxiv]
O. Angel, S. Bubeck, Y. Peres and F. Wei, Local max-cut in smoothed polynomial time. STOC 2017. [arxiv]
S. Bubeck and R. Eldan, Multi-scale exploration of convex functions and bandit convex optimization. COLT 2016 (Best Paper Award). [arxiv]
S. Bubeck and Y. T. Lee, Black-box optimization with a politician. ICML 2016. [arxiv]
S. Bubeck, J. Lehec, and R. Eldan, Sampling from a log-concave distribution with Projected Langevin Monte Carlo. Extended abstract in NIPS 2015. [draft]
S. Bubeck, O. Dekel, T. Koren and Y. Peres, Bandit Convex Optimization: sqrt{T} Regret in One Dimension. COLT 2015. [arxiv]
S. Bubeck and R. Eldan, The entropic barrier: a simple and optimal universal self-concordant barrier. COLT 2015. [arxiv]
C.Y. Liu and S. Bubeck, Most Correlated Arms Identification. COLT 2014. [draft]
K. Jamieson, M. Malloy, S. Bubeck and R. Nowak, lil’ UCB: An Optimal Exploration Algorithm for Multi-Armed Bandits. COLT 2014. [draft]
S. Bubeck and C.Y. Liu, Prior-free and prior-dependent regret bounds for Thompson Sampling. NIPS 2013. [pdf] [Supp. material]
S. Bubeck, V. Perchet and P. Rigollet, Bounded regret in stochastic multi-armed bandits. COLT 2013. [pdf] [Video]
(Note: The proof of Theorem 8 is not correct. We do not know if the theorem holds true.)
S. Bubeck, T. Wang and N. Viswanathan, Multiple Identifications in Multi-Armed Bandits. ICML 2013. [pdf]
S. Bubeck, N. Cesa-Bianchi and S. M. Kakade, Towards Minimax Policies for Online Linear Optimization with Bandit Feedback. COLT 2012. [pdf] [slides] [Video]
S. Bubeck and A. Slivkins, The best of both worlds: stochastic and adversarial bandits. COLT 2012. [pdf]
V. Gabillon. M. Ghavamzadeh, A. Lazaric and S. Bubeck, Multi-Bandit Best Arm Identification. NIPS 2011. [pdf] [Tech. reportl]
S. Bubeck, G. Stoltz and J. Y. Yu, Lipschitz Bandits without the Lipschitz Constant. In Proceedings of the 22nd International Conference on Algorithmic Learning Theory (ALT), 2011. [pdf]
J.Y. Audibert, S. Bubeck and G. Lugosi, Minimax Policies for Combinatorial Prediction Games. COLT 2011. [pdf] [slides] [Video]
J.Y. Audibert, S. Bubeck and R. Munos, Best Arm Identification in Multi-Armed Bandits. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010. [pdf] [slides]
S. Bubeck and R. Munos, Open-Loop Optimistic Planning. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010. [pdf] [slides]
S. Bubeck, R. Munos and G. Stoltz, Pure Exploration in Multi-Armed Bandit Problems. In Proceedings of the 20th International Conference on Algorithmic Learning Theory (ALT), 2009. [pdf] [slides]
J.Y. Audibert and S. Bubeck, Minimax Policies for Adversarial and Stochastic Bandits. In Proceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009 (Best Student Paper Award). [pdf] [slides]
S. Bubeck, R. Munos, G. Stoltz and C. Szepesvari, Online Optimization in X-Armed Bandits. In Advances in Neural Information Processing Systems (NIPS) 22, 2009. [pdf] [Supp. material] [poster]
U. von Luxburg, S. Bubeck, S. Jegelka and M. Kaufmann, Consistent Minimization of Clustering Objective Functions. In Advances in Neural Information Processing Systems (NIPS) 21, 2008. [pdf] [Supp. material] [poster]
Misc.
C. White, M. Khodak, R. Tu, S. Shah, S. Bubeck, D. Dey, A Deeper Look at Zero-Cost Proxies for Lightweight NAS. ICLR 2022 Blogpost track. [blog post]
D. Dey, S. Shah, and S. Bubeck, FEAR: A Simple Lightweight Method to Rank Architectures. Draft, 2021. [arxiv]
S. Bubeck, K. Edwards, H. Mania and C. Supko, On paths, stars and wyes in trees. Draft, 2016. [arxiv]
S. Bubeck and E. Gwynne, Asymptotic behavior of the Eden model with positively homogeneous edge weights. Draft, 2015. [arxiv]
S. Bubeck, Y. T. Lee, and M. Singh, A geometric alternative to Nesterov's accelerated gradient descent. Draft, 2015. [draft]
K. Jamieson, M. Malloy, S. Bubeck and R. Nowak, On Finding the Largest Mean Among Many. Asilomar, 2013. [draft]
S. Bubeck, D. Ernst and A. Garivier, Optimal discovery with probabilistic expert advice. 51st IEEE Conference on Decision and Control (CDC), 2012. [pdf] [Extended version]
J.Y. Audibert, S. Bubeck and R. Munos, Bandit View on Noisy Optimization. In Optimization for Machine Learning, MIT press, 2011. [pdf]
|